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Zusammenfassung

Im vorliegenden Paper wird ein Trajektorienplanungsalgorithmus fiir Urban Air Vehicles mit Fliigeln vorgestellt. Der
Flugpfad wird approximiert durch eine endliche Zahl quasi-stationdrer Kreis- und Geradensegmente im dreidimensionalen
Raum. Das zugrunde liegende numerische Optimierungsproblem, fiir dessen Initialisierung ein zweidimensionaler Dubins-
Pfad herangezogen wird, wird schlieBlich mittels NLP-Solver gelost. Der Algorithmus wird anhand des Szenarios eines
vollstindigen Antriebsausfalls beschrieben und demonstriert. Dabei werden drei verschiedene Konstellationen aus Start-
und Zielpunkten sowie drei verschiedene Kostenfunktionen betrachtet. Durch geschickte Annahmen, die im hinterlegten
Modell getroffen werden, und dank der Initialisierung mit Dubins-Pfad, welche das nichtholonome Flugsystem annéhernd
abbilden, konvergiert der Algorithmus schnell und zuverléssig.
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1. EINLEITUNG

Urban Air Mobility Vehicles sind fiir kiirzere Strecken in
iiberwiegend geringer Hohe ausgelegt. Im Fehlerfall bleibt
daher nur wenig Zeit, eine fliegbare Trajektorie zu einem
geeigneten Notlandefeld zu ermitteln. Mithilfe zeitdiskre-
ter Trajektorienoptimierung konnen mittels modellartiger
Abbildung des physikalischen Verhaltens komplexe Tra-
jektorien ermittelt werden. Deren Konvergenzfahigkeit und
-geschwindigkeit hédngt allerdings stark von der Giite der
Initialisierung, auch ,Initial Guess* oder ,,Anfangswerts-
schitzung® genannt, und der Problemkomplexitit ab. Um
sowohl schnell als auch zuverléssig zu einer Konvergenz des
Problems zu gelangen, muss das entsprechende Optimie-
rungsproblem vereinfacht und ein sinnvoller Initial Guess
gefunden werden.

Das vorliegende Paper stellt eine Methode der effizienten
Trajektorienoptimierung vor. Hierzu wird die Trajektorie
von der aktuellen Position zum Notlandefeld auf geometri-
sche Formen reduziert, reprisentiert im vorliegenden Fall
durch Kreis- und Geradensegmente. Die als konstant ange-
nommene Flugleistung im Gleitflug wird iiber eine quadra-
tische Polare angenéhert. Der Initial Guess ist die jeweilige
Losung des zweidimensionalen Dubins-Pfad (DP) [1]. Das
Trajektorienoptimierungsproblem wird schlieBlich mit Hil-
fe eines NLP-Solvers (fmincon in MATLAB) gelOst.

In der Literatur finden sich zahlreiche Ansitze Landungen
automatisiert durchzufiihren. Hierfiir miissen stets geeigne-
te Trajektorien von der aktuellen Position zum Landefeld
unter Beriicksichtigung der Flugleistungen erzeugt werden.
Fiir nicht-lineare Differentialgleichungen erzeugen [2] ge-
eignete Vertikal-Trajektorien fiir die Phasen ,,Approach®,
,.Glideslope* und ,,Flare* getrennt voneinander. Fiir linea-
re und nicht-lineare Bewegungsgleichungen eines UAVs er-
mittelt [3] Notlande-Trajektorien mittels ,,NLP-Solving* fiir
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maximale Zeit und maximale Distanz. Die Autoren in [4]
stellen zeit- und verbrauchsoptimierte Trajektorien unter
Beriicksichtigung von realen Anforderungen an ein eVTOL
(electrical Vertical Takeoff and Landing Aircraft) vor. Zum
Einsatz kommt hier ebenfalls sog. NLP-Solving. Dagegen
verwenden die Autoren in [5] keine fest und vorab ermit-
telten Trajektorien als Eingang in die Trajektorien, sondern
adaptiert online nur den als néchstes zu fliegenden Ab-
schnitt der Trajektorie mittels vereinfachter Bewegungsdy-
namik und einer Entscheidungslogik. Diese evaluiert, ob
der Landepunkt erreichbar ist. In dhnlicher Weise ermitteln
die Autoren von [6] online mittels geometrischer Approxi-
mationen der real fliegbaren Flugbahnen (Trochoiden) unter
Beriicksichtigung des Windes.

Im folgenden Kapitel wird das Modell beschrieben, welches
die Notfalltrajektorie sowie den Gleitflug approximiert. An-
schlieBend wird das Optimierungsproblem definiert und
dessen Losung erortert SchlieBlich werden die resultieren-
den Ergebnisse werden gezeigt und diskutiert.

Die vorliegende Arbeit ist im Rahmen des Projektes
,~AUDEKI“ (Automatisierte Flugfiihrung unterstiitzt durch
eine Kombination intelligenter Algorithmen) entstanden.

2. MODELLIERUNG

In diesem Abschnitt wird zundchst die geometrische

Darstellung der Trajektorie erklirt. AnschlieBend wird das

quasi-stationdre mathematische Modell vorgestellt, das die

Flugdynamik des eVTOLs approximiert.

Folgende Annahmen werden getroffen:

1) Die Trajektorie wird mithilfe von Geraden- und Kurven-
segmenten vereinfacht,

2) konstante Kriimmungsradien anstelle klothoidenédhnli-
cher Ubergiingen von Geradeaus- zu Kurvenflug und
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vice versa infolge masse- und triigheitsbedingter Ande-
rungen des Querneigungswinkels und der Kurvengeo-
metrie,

3) konstante Geschwindigkeit in jedem Segment anstatt
massebehafteter Umwandlung zwischen potenzieller
und kinetischer Energie,

4) abrupte Geschwindigkeitswechsel zwischen Segmenten
statt realistischer Beschleunigungs- und Verzogerungs-
phasen,

5) konstante Luftdichte je Segment anstatt hohenabhingi-
ger Variation,

6) Wind und Turbulenz werden vernachléssigt.

2.1. Geometrische Trajektorienreprisentation

Im Notfall (z.B. Antriebsausfall) wird ein erreichbarer
(Not-)Landeplatz und eine fliegbare Trajektorie dorthin
benotigt. Da die Zeit zum Ermitteln einer geeigneten
Notlandetrajektorie im Ernstfall sehr kurz sein sollte,
muss ein geeignetes Verfahren kurze Berechnungszeiten
aufweisen. Fiir eine schnelle und robuste Berechnung ist
es quasi unabdingbar, gewisse Vereinfachungen zugunsten
der Schnelligkeit und Robustheit in Kauf zu nehmen.

Flugzeugtrajektorien konnen durch geometrische Formen
wie Geraden, Segmente konstanter Kriimmung sowie Klo-
thoiden approximiert werden [7,8]. In der vorliegenden Ar-
beit kommen, wie bereits erwihnt, Geraden- und Kurven-
segmente zum Einsatz. Der Zustand an Start- und Endpunkt
der Trajektorie (xo bzw. Xg,) wird iiber den Zustandsvektor

T
(1) X=|Xqg Xe Xax Y|

mit den GroBen nordliche Koordinate x,, Ostliche Koor-
dinate x., der Hohe x,;; und der Flugzeugausrichtung und
Flugrichtung ¥ (,,Heading™) beschrieben.

Innerhalb der Flugleistungen im Gleitflug kann ein Lande-
platz durch die Kombination von vier geometrischen Seg-
menten erreicht werden (siche Abb. 1):

- ein Kreissegment s1,

+ ein lineares Segment s7,

« ein weiteres Kreissegment s3 und

- ein abschlieBendes lineares Segment s, .

Jedes Kreissegment ist definiert iiber seinen Radius? r sowie
iiber seine Segmentldnge /. Nach [14] hingt der Kurvenra-
dius einer stationér geflogenen Kurve von der Geschwin-
digkeit V und dem Hingewinkel u ab:

2
@) r(V,p) Ztan ()
Zur Vermeidung numerischer Singularititen (fiir den Ein-
satz von Euler-Winkeln) bei y = 90° sowie zur realisier-
baren Darstellung der Kurvensegmente wird der Quernei-
gungswinkel bei der spiteren Optimierung auf den Bereich
—45° < u < +45° begrenzt. Der Zusammenhang zwischen
der Kursidnderung in einem Kurvensegment AY hingt von
der Bogenldnge / und dem Radius r des Kreisbogenseg-

Das letzte lineare Segment s; wird zwar nicht zum Erreichen des
Zielpunktes Xy bendtigt, jedoch zur Stabilisierung des Endanflugs be-
rlicksichtigt.

’Das Vorzeichen des Radius legt hier die Drehrichtung fest.
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Abb. 1. Beispielhaft einer geometrischen Notlandetrajektorie.

ments ab:

3) AY = . 360°

2ntr
Lineare Segmente werden durch ihre Léange / beschrieben.
Alle linearen Segmente sind im Ubergangspunkt tangential
an die Kreissegmente angeschlossen, und das erste Kreis-
segment beginnt tangential zur aktuellen Flugrichtung.
Ein Parametersatz p definiert somit eine eindeutige geome-
trische (noch zweidimensionale) Trajektorie T = f(p, Xo),
die trigonometrisch berechnet und dargestellt werden kann,
wie in Abb. 1 dargestellt ist:

“4)
p =

lusl VS] lsl lSz VSz ,uS3 VS3 153 lS4 VS4

2.2. Flugleistungsmodell

Das verwendete Modell approximiert das mechanische Ver-
halten des Flugzeugs. Vor allem die Annahme fester Ge-
schwindigkeiten in jedem Segment ermdglicht die indivi-
duelle Berechnung der abgebauten Hohendifferenz in jedem
Segment.

2.3. Flugleistung

Um den Hohenverlust iiber alle Segmente im Gleitflug ab-
schitzen zu konnen, werden quasi-stationdre Gleitfluglei-
stungen entlang einer quadratischen, aerodynamischen Po-
lare angenommen. Der Widerstandsbeiwert cp hingt dabei
von dem aktuellen Auftriebsbeiwert ¢y, iiber den dimensi-
onslosen Parameter k.., und den dimensionslosen Nullwi-
derstandsbeiwert cp o ab:

() CD(CL) =cCp,o t kaero C{%

Der Auftriebsbeiwert ¢y, ergibt sich fiir quasi-stationér kon-
stante Geschwindigkeit, unter Annahme kleiner Bahnwin-
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kel y, zu

2mg 1
q Srer cos(i) ’

(6) cL(g) =

mit der Flugzeugmasse m, der Fliigelfliche S;.f und dem
Staudruck ¢ (V) = ’@Vz. Im stationdren Kurvenflug er-
hoht sich der notwendige Auftrieb infolge des Hingewinkels
um den Faktor ﬁ

Die Luftdichte p (/) wird aufgrund des kleinen betrachteten
Hohenintervalls linear mit der Hohe nach [9] mit dem Luft-
druck auf Meeresniveau py und dem linearisierten Dichte-

abfall g—fl approximiert:

_ 0%
% p(h) = p0— L h

Der aerodynamische Widerstand ergibt sich schlieBlich zu
®) D(V) =q(V) S cp(cr)

Der stationére Gleitpfadwinkel im aktuellen (antriebslosen)
Segment lautet

9 v(V, h) = arcsin (_D(V)) ,
mg

wihrend die im Segment abgebaute Hohe
(10) Ah(V,h) =1 sin(y(V, h))

betrégt.
Alle relevanten Parameter sind in Tab. 1 zusammengefasst.

TAB 1. Verwendete Modellparameter.

m 435kg

Sref 10 rn2

CD,0 0.0107

kaero 0.062

p0 1.225kg/m?

¥ 1.144x 10" kg/m*
g 9.81 N/kg

3. METHODEN

In diesem Abschnitt wird das zu I6sende Optimierungspro-
blem spezifiziert, eine numerische Losungsmethode vorge-
stellt und die Strategie zur Anfangswertschitzung erldutert.

3.1. Definition des Optimalsteuerungsproblems

Wie in Abschnitt 2.2 beschrieben, definiert ein eindeuti-
ger Parametersatz p (vgl. Gl. (4)) eine eindeutige Trajek-
torie T = f(xg,p) vom Anfangspunkt Xy zum Endpunkt
Xfin (X0, p). Die Parameter p bilden die Optimierungsvaria-
blen.

Der Aufsetzpunkt des anvisierten Notlandeplatzes weist die
Koordinaten bzw. den Zustand X, (Zielzustand, vgl. (1))
auf. Gesucht wird in der Parameteroptimierung der Parame-
tersatz, welcher die Trajektorie T zu diesem Aufsetzpunkt
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beschreibt. Daher wird fiir die Parameteroptimierung fol-
gende Nebengleichheitsbedingung gesetzt:
Y

Xfin (X0, P) — Xtarg = 0

Es werden drei verschiedene Kostenfunktionen betrachtet.
Die erste Kostenfunktion Jp minimiert die Gesamtpfadldn-
ge, wobei der Index g, fiir ,,shortest path® steht:

4
(12) min Jp = Zl Is, (P)-

Die zweite Kostenfunktion J;, maximiert die Pfadlinge zur
Erzielung eines moglichst flachen Gleitwinkels, wobei der
Index y, fiir ,,longest path® steht:

4
(13) maxJp = ) ls,(p).
n=1

Eine dritte Zielfunktion Jy,y basiert auf der Summe der
Differenzen der Geschwindigkeiten zwischen den vier Seg-
menten sq, S», §3 und s4, wobei der Index v fiir ,,minimal
velocity difference* steht:

3
min Jy = Z [Vero (P) = Vs, (D)

n=1

(14)

Mit dieser Kostenfunktion werden in der Flugtrajektorie
die Geschwindigkeitsunterschiede zwischen den Segmen-
ten minimiert.

Wie zuvor in Kap. 2.1 beschrieben, wird der Hangewinkel
auf den Bereich —45° < 1 < +45° begrenzt. Desweiteren ist
die Geschwindigkeit auf Werte zwischen Vi, <V < Viax
limitiert. Fiir das letzte Geradensegment vor der Landung
s4 wird zudem die Léange auf ein Mindestmal3 /;, > 50m ge-
halten, um eine Stabilisierung des Landeanflugs zu ermog-
lichen. Diese Begrenzungen werden direkt als ppi, bzw.
Pmax als Grenzen fiir den Parametervektor p an den Opti-
mierungsalgorithmus iibergeben.

Zur Losung wird ein gradientbasierter, nichtlinearer Opti-
mierungsalgorithmus verwendet. Als Simulations- und Dar-
stellungsumgebung dient MATLAB [10], insbesondere die
Optimierungsfunktion fmincon von MATLAB. Zur Reduk-
tion der Rechenzeit werden Modell und Nebenbedingungen
als mex-Funktionen (MaTtLAB-Executables) kompiliert.

3.2. Initial Guess

Fiir den initial guess po (vgl. Gleichung (4)) wird in vor-
liegender Arbeit der DP [11] herangezogen. Der Dubins-
Pfad bezeichnet den kiirzesten (zweidimensionalen) Pfad
zwischen Start- und Endkonfiguration (blaue bzw.
Pfeile), der vereinfachend ausschlieBlich aus maximal zwei
Kreisbogen mit festem Radius (jeweils schwarze Bogen)
und einem Geradensegment (rote Linien) besteht (vgl. Abb.
2).

Durch die zusitzliche Reduktion des in Kap. 3.1 beschriebe-
nen Optimierungsproblems auf zwei laterale Dimensionen
(x und y) wird der kiirzeste Pfad zwischen den Punkten x
und X ermittelt. Die in Abb. 1 gezeigte Trajektorie wird
um den Abschnitt s4 gekiirzt. Mit anderen Worten wird der
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Abb. 2. Zwei beispielhafte Dubins Pfade.

Beginn der Landebahn und damit der Zielpunkt der Trajek-
torie um einen fixen Betrag entgegen der Landebahnrich-
tung nach vorn verschoben. Des Weiteren werden im Para-
metervektor pg alle Geschwindigkeiten V| = V, = V3 = Vi
mit der Initialisierungsgeschwindigkeit Vjy;, alle Hingewin-
kel uy = puy = pu3 = pmax und und alle (Bogen-)Léngen /1,
l> und /3 direkt auf Ergebnis-Lingen aus dem Algorithmus
fiir den initial guess gesetzt. Bogenldnge /, Geschwindigkeit
und Hingewinkel hédngen iiber Gleichung (3) zusammen.
Zur Verwendung des DP kommt die Toolbox [12, 13] zum
Einsatz. Mit dem so erzeugten ,,initial guess* wird schlief3-
lich die in Abschnitt 3.1 erlduterte Losung des Optimie-
rungsproblems initialisiert.

4. ERGEBNISSE

In diesem Abschnitt werden verschiedene Problemkonstel-
lationen vorgestellt, um die Leistungsfiahigkeit der vorge-
stellten Flugbahnoptimierungs-Methode zu demonstrieren.
Jede Konstellation ist definiert durch einen Anfangszustand
xo und einen Zielpunkt X, fiir die mindestens eine giiltige
Trajektorienldsung ermittelt wird.

4.1. Konstellation 1

Fiir die erste Konstellation werden die in Tab. 2 aufgefiihrten
Start- und Zielzustinde verwendet:

TAB 2. Konstellation 1 (Einheiten [m] bzw. [°]).

‘ Xn Xe Xalt ¥
X0 -2100 250 450 110
Xag | 4 -3 0 285

Die Fluggeschwindigkeiten in den vier Abschnitten werden
Vinin = 405 und Vipax = 150 festgelegt. Fiir den Hénge-
winkel in den beiden Kreissegmenten gilt |z ], |u3] < 45°.
Die angewendete Kostenfunktion ist die Minimierung der
Gesamtpfadlinge (shortest path) nach Gleichung (12).

In Abb. 3 ist das Ergebnis der vorgestellten Methode fiir
Konstellation 1 zu sehen. Darin ist der DP in blau und die Er-
gebnistrajektorie nach der Optimierung in dargestellt.
Dazwischen zeigen graue Linien die Zwischentrajektorien
wihrend der Konvergenz des Optimierungsverfahrens. Die
Wegpunkte (dargestellt mit Dreiecken mit blauer
Umrandung) stellen die Verbindungspunkte zwischen den
Streckensegmenten und den Aufsetzpunkt auf der Lande-
bahn dar.
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Abb. 3. Trajektorie fiir die Konstellation 1.

Erkennbar sind die fixen Radien des DP, die durch die
angehingte Optimierung noch angepasst werden. Zudem
wird der Abschnitt s4 durch die Optimierung verlingert —
wie spiter gezeigt wird — um Hohe abzubauen. Die Lén-
ge des DP (zweidimensional, ohne Hohenverlauf) betréigt
2,72km, die Lange der optimierten, dreidimensionalen Tra-
jektorie schlieBlich 2, 98km. Die Trajektorie wird durch die
Optimierung vor allem im Endteil (Segmente s3 und s4)
verlidngert.

Abb. 4 zeigt den Hohenverlauf der Trajektorie, sowie die
Verldufe der Steuergroflen Geschwindigkeit in allen vier
Segmenten Vi, V,, V3, V4 und die Hingewinkel in den bei-
den Kurvensegmenten p; und u3. Gegeniiber den Kurven-
segmenten weisen die beiden Geradensegmente s, und s4
einen steileren Gleitwinkel auf. Der Hohenabbau erfolgt al-
so vor allem im Geradeausflug, und folglich ist auch die Ge-
schwindigkeit in den Geradensegmenten deutlich hoher als
in den Kurvensegmenten. Dabei springt die Geschwindig-
keit zwischen den Kurven- und den Geradensegmenten zwi-
schen Vpin und Vi« Ein Beschleunigen beziehungsweise
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Abb. 4. Verliufe Konstellation 1.

ein Verzogern um gut 1007 zwischen den Segmenten, wie
durch die Vereinfachung auf stationidre Segmente vorgese-
hen ist, bedarf in der Realitit starker Hoheninderungen und
ist damit in der Realitét nicht fiir eine Notfalltrajektorie an-
wendbar. Der Hingewinkel in den beiden Kurvensegmenten
liegt bei jeweils ca. —45° und damit nahe am Maximalwert,
der fiir die Optimierung erlaubt ist. Fiir Konstellation 1 l14sst
sich vermuten, dass ein Kurvenflug moglichst kurz gehalten
werden sollte. Die Fluggeschwindigkeit ist in den Kurven
gering, der Hingewinkel grof3, was mit Gleichung (2) einen
kleinen Radius bewirkt. Da der effektive Anteil der Kurven-
segmenten an der Gesamttrajektorienlidnge gering ist, findet
der Hohenabbau vor allem in den Geradensegmenten statt.
Fiir Konstellation 1 wird im Versuch fiir die Ermittlung des
DP rund 0, 04s und fiir die Konvergenz der Optimierung
im Mittel 0.18s mit 110 Iterationen benotigt’. Ohne Initia-
lisierung des Problems mittels DP konvergiert das Problem
nicht.

4.2. Konstellation 2

Fiir die zweite Konstellation werden folgende Start- und
Zielzustinde angenommen (vgl. Tab. 3):

TAB 3. Konstellation 2 (Einheiten [m] bzw. [°]).

‘ Xn Xe Xalt k4
X0 -2100 120 500 295
Xtarg 4 -3 0 170

3Die verwendete Hardware ist dabei in Intel Core Ultra 7 mit 12 Kernen
(1,7GHz) , 32GB RAM und MatLaB R2024a. Die Modell- und die
Nebenbedingungsfunktionen sind zur schnelleren Ausfiihrung zu ,,mex**-
Funktionen [10] kompiliert.
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Die angewendete Kostenfunktion ist nun die Maximierung
der Gesamtpfadlinge (longest path) nach (13) — gleichzu-
setzen mit einem Flug nahe der Fluggeschwindigkeit des
besten Gleitens Vg, . Schon vorab sei darauf hingewiesen,
dass der DP im Gegensatz zu dieser Kostenfunktion steht.
Dennoch funktioniert er gut als ,.initial guess®. Ohne DP
konvergiert dieses Problem nicht.

best Glide
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Abb. 5. Trajektorie fiir die Konstellation 2.

In Abb. 5 ist das Ergebnis der vorgestellten Methode fiir
Konstellation 2 dargestellt. Es ist zu sehen, dass die Linge
der Ergebnis-Trajektorie durch die Optimierung ausgehend
vom DP noch deutlich vergroBert wird. Im Vergleich zu
Konstellation 1 ist die Ausweitung der Trajektorie erheb-
lich, was grundsitzlich an der verinderten Kostenfunktion
in Konstellation 2 liegt. Die Linge des DP betragt 2, 73km,
die Lange der maximierten Trajektorie mit 6, 80km. Wie zu
erwarten war, werden zugleich (und im ebenfalls im Gegen-
satz zu Konstellation 1) durch die Optimierung die Radien
der Kurvensegmente erhoht. Vor allem die Geradensegmen-
te sp und s4 verldngern sich durch die Maximierung.

Abb. 6 zeigt den Hohenverlauf der Trajektorie, sowie die
Verldufe der Steuergroflen Geschwindigkeit in allen vier
Segmenten Vi, V5, V3, V4, und die Hingewinkel in den bei-
den Kurvensegmenten u; und u3. Gegeniiber Konstellation
1 ist der Hohenverlauf weitestgehend linear, der Gleitwin-
kel in allen vier Segmenten ist annihernd gleich, der Abbau
der Hohe findet also gleichmiBig iiber die gesamte Trajek-
torie statt. Spriinge in der Fluggeschwindigkeit sind wei-
terhin vorhanden, insgesamt aber mit deutlich geringeren
Sprunghohen. Der gesamte Geschwindigkeitsverlauf liegt
zwischen V) =V, = V3=V, =58... 65% und damit nahe
an der Geschwindigkeit fiir das beste Gleiten* Vg, . Diese
liegt fiir die quadratische Polare mit den Parametern aus
Tab. 1 bei ca 60% (vgl. Abb. 7). Im Gegensatz zu Konstel-
lation 1 ist die Geschwindigkeit in den Kurvensegmenten
etwas hoher als in den Geradensegmenten. Der Abstand von
der Geschwindigkeit des besten Gleitens ist aber klein, der
Einfluss auf den Gleitwinkel vernachlidssigbar, wie auch im

“Die Maximale Strecke im Gleitflug kann bei der Fluggeschwindigkeit
des besten Gleitens erlangt werden.
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Abb. 6. Verliufe Konstellation 2.

Hohenverlauf zu sehen ist. Die Hangewinkel in den beiden
Kurvensegmenten liegt zwischen pj3 = —45...26°. Durch
diese etwas hohere Geschwindigkeit ist der Kurvenradius
im Vergleich zu Konstellation 1 nach (2) groBer.

Fiir Konstellation 2 wird im Versuch fiir die Ermittlung des
DP im Mittel 0, 033s und fiir die Konvergenz der Optimie-
rung 0.30s mit 87 Iterationen benotigt.

4.3. Konstellation 3

Mit diesem Beispiel werden die drei Kostenfunktionen (12),
(13) und (14) miteinander verglichen. Fiir die dritte Kon-
stellation werden folgende Start- und Zielzustéinde ange-
nommen (vgl. Tab. 4):

TAB 4. Konstellation 1 (Einheiten [m] bzw. [°]).

Xalt k4

‘ Xn Xe

Xo | —2100 250 450 285
Xag | 4 -3 0 285

Abb. 8 zeigt die Verldufe der Ergebnistrajektorien fiir die
drei Kostenfunktionen kiirzester Pfad bzw. shortest path
(sp) nach (12), lingster Pfad bzw. longest path (lp) nach
(13) und minimale Differenzen der Geschwindigkeiten mi-
nimum velocity difference (mV) nach (14). Die mit Ab-
stand kiirzeste Trajektorie ist erwartungsgemif die fiir die
Kostenfunktion sp. Sie verlduft auf der nahezu kiirzesten
Verbindung zur Landebahn. Am weitesten holt die Trajek-
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Abb. 7. Gleitzahl iiber der Fluggeschwindigkeit (die Flugge-
schwindigkeit ist die wahre Fluggeschwindigkeit ge-
geniiber den Luftteilchen (Vas) ) fiir verschiedene
Flughéhen (0. ..500...1000m).
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Abb. 8. Trajektorie fiir die Konstellation 3.

torie fiir Ip aus auf dem Weg zur Landebahn. Dazwischen
liegt die Trajektorie fiir mV beginnend mit einem auffallend
weiten Bogensegment zu Beginn der Trajektorie.

Die Gesamtliangen fiir den DP und die drei Trajektorien
belaufen sich dabei auf (vgl. Tab. 5):

TAB 5. Konstellation 3 Vergleich der Trajektorienlingen.

Trajektorie Linge
Dubins 2,47km

3,22km
Ip 7,67km
mV 6, 46km

Abb. 9 zeigt den Hohenverlauf fiir die drei Vergleichstra-
jektorien, sowie die Verldufe der Steuergroflen Geschwin-
digkeit in allen vier Segmenten Vi, V5, V3, V4 und die Hén-
gewinkel in den beiden Kurvensegmenten y und p3. Auch
wie in Konstellation 1 sind die Geschwindigkeitsspriinge
fiir sp erheblich, der zugehorige Hohenverlauf entsprechend
mit variierendem Bahnwinkel. Die Geschwindigkeit in den
Kurvensegmenten s; und s3 ist gering, dagegen in den Ge-
radensegmenten s, und s4 hoch, wie schon in Konstellation
1 zu sehen war.
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Abb. 9. Verliufe Konstellation 3.

Die Trajektorie fiir lp liberwindet die ldngste Strecke. Der
Hohenverlauf bleibt dabei weitestgehend linear, nur das
letzte Segment s4 ist etwas flacher. Geschwindigkeitsspriin-
ge sind zwar vorhanden, aber im Vergleich zur Trajektorie
fiir sp deutlich geringer ausgeprigt. Aulerdem befindet sich
die Geschwindigkeit wihrend des Verlaufs ndher an der Ge-
schwindigkeit des besten Gleitens Vg, ~ 60<. Auffillig
geradlinig ist der Hohenverlauf bei der Trajektorie mV, die
Geschwindigkeit ist, wie zu erwarten, konstant iiber die gan-
ze Trajektorie. Die Kostenfunktion (14) eignet sich im Ein-
satz folglich gut, um Geschwindigkeitsspriinge zwischen
allen Segmenten zu minimieren. Es sei jedoch darauf hin-
gewiesen, dass die Geschwindigkeit sich genau am unteren
Rand Vi, befindet. Aus Sicherheitsgriinden, sollte diese
Grenze angehoben werden.

Abschlielend werden in Tab. 6 fiir Konstellation 3 und alle
drei Kostenfunktionen die Berechnungs- und Konvergenz-
daten verglichen. Es ist zu sehen, dass das Problem fiir
Kostenfunktion mV am schnellsten konvergiert und dafiir
am wenigsten Iterationen benotigt werden. Die Dauer zur
Ermittlung fiir den DP ist rein theoretisch fiir alle drei Ko-
stenfunktionen gleich. Insgesamt liegt die Dauer fiir die vor-
gestellte Methode fiir alle drei Kostenfunktionen bei unter
0, 3s. Die optimalen Flugtrajektorien konnen ausreichend
schnell berechnet werden, um im Rahmen von schnellen
Entscheidungsprozessen in Notsituationen in vertretbarer
Zeit sicher angewendet werden zu konnen, da es sich bei
einer Notlandung um eine strategische und nicht reaktive
Mafnahme handelt.
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TAB 6. Vergleich Performance Konstellation 3.

s 2

= & o £
=1 Bt I =
£ = 5 £
=] [ S D
2| A a =
1]0,030s 0,225 169
20,0255 0,16s 154
310,028 0,11s 104

5. DISKUSSION

In der Arbeit wurde eine Approximation von Trajektorien
durch eine Abfolge einfacher geometrischer Formen, Ge-
raden und Kreissegmente vorgestellt. Zur Erzeugung einer
Notfalltrajektorie werden dabei zwei Kurvensegmente und
zwei Geradensegmente verwendet mit jeweils konstanter
Geschwindigkeit und Hingewinkel. Mithilfe eines Opti-
mierungsalgorithmus konnen die Parameter der approxi-
mierten Trajektorie so bestimmt werden, dass ein Zielpunkt
erreicht wird. Das Optimierungsproblem muss initialisiert
werden, wofiir ein zweidimensionaler DP angewendet wird.
Ohne die Initialisierung ist eine Konvergenz deutlich un-
wahrscheinlicher. Es wurden verschiedene Kostenfunktio-
nen vorgestellt und miteinander verglichen. Dabei zeigte
sich, dass eine Initialisierung mit DP das Konvergenzver-
halten des Algorithmus iiberhaupt erst ermoglicht. Trajek-
torien fiir den kiirzesten Weg zum Zielpunkt weisen star-
ke Geschwindigkeitsspriinge auf und sind daher fiir reale
Anwendungen ungeeignet. Trajektorien fiir den weitesten
Weg zum Zielpunkt liefern deutlich bessere, jedoch eben-
falls nicht optimale Ergebnisse. Vielversprechend ist hinge-
gen eine Kostenfunktion zur Minimierung der Geschwin-
digkeitsunterschiede zwischen den einzelnen Segmenten.
Fiir die untersuchten Konstellationen und Kostenfunktio-
nen konnte gezeigt werden, dass der vorgestellte Algorith-
mus mit DP-Initialisierung ausreichend schnell (< 0, 3s)
und stabil konvergiert und damit fiir die kurzfristige Erzeu-
gung von Notlandetrajektorien gut geeignet ist.

Um die Konvergenz-Fahigkeit sicherstellen zu konnen, wer-
den im néchsten Schritt Monte-Carlo-Simulationen mit zu-
fillig erzeugten Konstellationen durchgefiihrt. Dabei ist von
groBBem Interesse, zu welchen Anteilen welche der drei Ko-
stenfunktionen zu sinnvollen Ergebnissen fiihrt und welche
der drei Kostenfunktionen fiir die Anwendung bevorzugt
zum FEinsatz kommen sollte. Des Weiteren sollen analy-
tisch beschriebene Geschwindigkeitsiiberginge zwischen
den Segmenten und Ubergiinge des Hingewinkels unter-
sucht und implementiert werden.
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