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Zusammenfassung
Im vorliegenden Paper wird ein Trajektorienplanungsalgorithmus für Urban Air Vehicles mit Flügeln vorgestellt. Der
Flugpfad wird approximiert durch eine endliche Zahl quasi-stationärer Kreis- und Geradensegmente im dreidimensionalen
Raum. Das zugrunde liegende numerische Optimierungsproblem, für dessen Initialisierung ein zweidimensionaler Dubins-
Pfad herangezogen wird, wird schließlich mittels NLP-Solver gelöst. Der Algorithmus wird anhand des Szenarios eines
vollständigen Antriebsausfalls beschrieben und demonstriert. Dabei werden drei verschiedene Konstellationen aus Start-
und Zielpunkten sowie drei verschiedene Kostenfunktionen betrachtet. Durch geschickte Annahmen, die im hinterlegten
Modell getroffen werden, und dank der Initialisierung mit Dubins-Pfad, welche das nichtholonome Flugsystem annähernd
abbilden, konvergiert der Algorithmus schnell und zuverlässig.
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1. EINLEITUNG

Urban Air Mobility Vehicles sind für kürzere Strecken in
überwiegend geringer Höhe ausgelegt. Im Fehlerfall bleibt
daher nur wenig Zeit, eine fliegbare Trajektorie zu einem
geeigneten Notlandefeld zu ermitteln. Mithilfe zeitdiskre-
ter Trajektorienoptimierung können mittels modellartiger
Abbildung des physikalischen Verhaltens komplexe Tra-
jektorien ermittelt werden. Deren Konvergenzfähigkeit und
-geschwindigkeit hängt allerdings stark von der Güte der
Initialisierung, auch „Initial Guess“ oder „Anfangswerts-
schätzung“ genannt, und der Problemkomplexität ab. Um
sowohl schnell als auch zuverlässig zu einer Konvergenz des
Problems zu gelangen, muss das entsprechende Optimie-
rungsproblem vereinfacht und ein sinnvoller Initial Guess
gefunden werden.
Das vorliegende Paper stellt eine Methode der effizienten
Trajektorienoptimierung vor. Hierzu wird die Trajektorie
von der aktuellen Position zum Notlandefeld auf geometri-
sche Formen reduziert, repräsentiert im vorliegenden Fall
durch Kreis- und Geradensegmente. Die als konstant ange-
nommene Flugleistung im Gleitflug wird über eine quadra-
tische Polare angenähert. Der Initial Guess ist die jeweilige
Lösung des zweidimensionalen Dubins-Pfad (DP) [1]. Das
Trajektorienoptimierungsproblem wird schließlich mit Hil-
fe eines NLP-Solvers (fmincon in Matlab) gelöst.
In der Literatur finden sich zahlreiche Ansätze Landungen
automatisiert durchzuführen. Hierfür müssen stets geeigne-
te Trajektorien von der aktuellen Position zum Landefeld
unter Berücksichtigung der Flugleistungen erzeugt werden.
Für nicht-lineare Differentialgleichungen erzeugen [2] ge-
eignete Vertikal-Trajektorien für die Phasen „Approach“,
„Glideslope“ und „Flare“ getrennt voneinander. Für linea-
re und nicht-lineare Bewegungsgleichungen eines UAVs er-
mittelt [3] Notlande-Trajektorien mittels „NLP-Solving“ für

maximale Zeit und maximale Distanz. Die Autoren in [4]
stellen zeit- und verbrauchsoptimierte Trajektorien unter
Berücksichtigung von realen Anforderungen an ein eVTOL
(electrical Vertical Takeoff and Landing Aircraft) vor. Zum
Einsatz kommt hier ebenfalls sog. NLP-Solving. Dagegen
verwenden die Autoren in [5] keine fest und vorab ermit-
telten Trajektorien als Eingang in die Trajektorien, sondern
adaptiert online nur den als nächstes zu fliegenden Ab-
schnitt der Trajektorie mittels vereinfachter Bewegungsdy-
namik und einer Entscheidungslogik. Diese evaluiert, ob
der Landepunkt erreichbar ist. In ähnlicher Weise ermitteln
die Autoren von [6] online mittels geometrischer Approxi-
mationen der real fliegbaren Flugbahnen (Trochoiden) unter
Berücksichtigung des Windes.
Im folgenden Kapitel wird das Modell beschrieben, welches
die Notfalltrajektorie sowie den Gleitflug approximiert. An-
schließend wird das Optimierungsproblem definiert und
dessen Lösung erörtert Schließlich werden die resultieren-
den Ergebnisse werden gezeigt und diskutiert.
Die vorliegende Arbeit ist im Rahmen des Projektes
„AUDEKI“ (Automatisierte Flugführung unterstützt durch
eine Kombination intelligenter Algorithmen) entstanden.

2. MODELLIERUNG

In diesem Abschnitt wird zunächst die geometrische
Darstellung der Trajektorie erklärt. Anschließend wird das
quasi-stationäre mathematische Modell vorgestellt, das die
Flugdynamik des eVTOLs approximiert.
Folgende Annahmen werden getroffen:
1) Die Trajektorie wird mithilfe von Geraden- und Kurven-

segmenten vereinfacht,
2) konstante Krümmungsradien anstelle klothoidenähnli-

cher Übergängen von Geradeaus- zu Kurvenflug und
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vice versa infolge masse- und trägheitsbedingter Ände-
rungen des Querneigungswinkels und der Kurvengeo-
metrie,

3) konstante Geschwindigkeit in jedem Segment anstatt
massebehafteter Umwandlung zwischen potenzieller
und kinetischer Energie,

4) abrupte Geschwindigkeitswechsel zwischen Segmenten
statt realistischer Beschleunigungs- und Verzögerungs-
phasen,

5) konstante Luftdichte je Segment anstatt höhenabhängi-
ger Variation,

6) Wind und Turbulenz werden vernachlässigt.

2.1. Geometrische Trajektorienrepräsentation

Im Notfall (z.B. Antriebsausfall) wird ein erreichbarer
(Not-)Landeplatz und eine fliegbare Trajektorie dorthin
benötigt. Da die Zeit zum Ermitteln einer geeigneten
Notlandetrajektorie im Ernstfall sehr kurz sein sollte,
muss ein geeignetes Verfahren kurze Berechnungszeiten
aufweisen. Für eine schnelle und robuste Berechnung ist
es quasi unabdingbar, gewisse Vereinfachungen zugunsten
der Schnelligkeit und Robustheit in Kauf zu nehmen.
Flugzeugtrajektorien können durch geometrische Formen
wie Geraden, Segmente konstanter Krümmung sowie Klo-
thoiden approximiert werden [7,8]. In der vorliegenden Ar-
beit kommen, wie bereits erwähnt, Geraden- und Kurven-
segmente zum Einsatz. Der Zustand an Start- und Endpunkt
der Trajektorie (x0 bzw. xfin) wird über den Zustandsvektor

(1) x =

[
𝑥n 𝑥e 𝑥alt Ψ

]𝑇
,

mit den Größen nördliche Koordinate 𝑥n, östliche Koor-
dinate 𝑥e, der Höhe 𝑥alt und der Flugzeugausrichtung und
Flugrichtung Ψ („Heading“) beschrieben.
Innerhalb der Flugleistungen im Gleitflug kann ein Lande-
platz durch die Kombination von vier geometrischen Seg-
menten erreicht werden (siehe Abb. 1):
• ein Kreissegment 𝑠1,
• ein lineares Segment 𝑠2,
• ein weiteres Kreissegment 𝑠3 und
• ein abschließendes lineares Segment 𝑠4

1.
Jedes Kreissegment ist definiert über seinen Radius2 𝑟 sowie
über seine Segmentlänge 𝑙. Nach [14] hängt der Kurvenra-
dius einer stationär geflogenen Kurve von der Geschwin-
digkeit 𝑉 und dem Hängewinkel 𝜇 ab:

(2) 𝑟 (𝑉, 𝜇) = 𝑉2

𝑔 tan(𝜇)

Zur Vermeidung numerischer Singularitäten (für den Ein-
satz von Euler-Winkeln) bei 𝜇 = 90◦ sowie zur realisier-
baren Darstellung der Kurvensegmente wird der Quernei-
gungswinkel bei der späteren Optimierung auf den Bereich
−45◦ ≤ 𝜇 ≤ +45◦ begrenzt. Der Zusammenhang zwischen
der Kursänderung in einem Kurvensegment ΔΨ hängt von
der Bogenlänge 𝑙 und dem Radius 𝑟 des Kreisbogenseg-

1Das letzte lineare Segment 𝑠4 wird zwar nicht zum Erreichen des
Zielpunktes xtarg benötigt, jedoch zur Stabilisierung des Endanflugs be-
rücksichtigt.

2Das Vorzeichen des Radius legt hier die Drehrichtung fest.

Abb. 1. Beispielhaft einer geometrischen Notlandetrajektorie.

ments ab:

(3) ΔΨ =
𝑙

2𝜋𝑟
· 360°

Lineare Segmente werden durch ihre Länge 𝑙 beschrieben.
Alle linearen Segmente sind im Übergangspunkt tangential
an die Kreissegmente angeschlossen, und das erste Kreis-
segment beginnt tangential zur aktuellen Flugrichtung.
Ein Parametersatz p definiert somit eine eindeutige geome-
trische (noch zweidimensionale) Trajektorie T = 𝑓 (p, x0),
die trigonometrisch berechnet und dargestellt werden kann,
wie in Abb. 1 dargestellt ist:

p =[
𝜇s1 𝑉s1 𝑙s1 𝑙s2 𝑉s2 𝜇s3 𝑉s3 𝑙s3 𝑙s4 𝑉s4

]𝑇
(4)

2.2. Flugleistungsmodell

Das verwendete Modell approximiert das mechanische Ver-
halten des Flugzeugs. Vor allem die Annahme fester Ge-
schwindigkeiten in jedem Segment ermöglicht die indivi-
duelle Berechnung der abgebauten Höhendifferenz in jedem
Segment.

2.3. Flugleistung

Um den Höhenverlust über alle Segmente im Gleitflug ab-
schätzen zu können, werden quasi-stationäre Gleitfluglei-
stungen entlang einer quadratischen, aerodynamischen Po-
lare angenommen. Der Widerstandsbeiwert 𝑐D hängt dabei
von dem aktuellen Auftriebsbeiwert 𝑐L über den dimensi-
onslosen Parameter 𝑘aero und den dimensionslosen Nullwi-
derstandsbeiwert 𝑐D,0 ab:

(5) 𝑐D (𝑐L) = 𝑐D,0 + 𝑘aero 𝑐
2
L

Der Auftriebsbeiwert 𝑐𝐿 ergibt sich für quasi-stationär kon-
stante Geschwindigkeit, unter Annahme kleiner Bahnwin-
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kel 𝛾, zu

(6) 𝑐L (𝑞) =
2 𝑚 𝑔

𝑞 𝑆ref

1
cos(𝜇) ,

mit der Flugzeugmasse 𝑚, der Flügelfläche 𝑆ref und dem
Staudruck 𝑞(𝑉) =

𝜌(ℎ)
2 𝑉2. Im stationären Kurvenflug er-

höht sich der notwendige Auftrieb infolge des Hängewinkels
um den Faktor 1

cos(𝜇) .
Die Luftdichte 𝜌(ℎ) wird aufgrund des kleinen betrachteten
Höhenintervalls linear mit der Höhe nach [9] mit dem Luft-
druck auf Meeresniveau 𝜌0 und dem linearisierten Dichte-
abfall d𝜌

dℎ approximiert:

(7) 𝜌(ℎ) = 𝜌0 − d𝜌
dℎ

ℎ

Der aerodynamische Widerstand ergibt sich schließlich zu

(8) 𝐷 (𝑉) = 𝑞(𝑉) 𝑆 𝑐D (𝑐L)

Der stationäre Gleitpfadwinkel im aktuellen (antriebslosen)
Segment lautet

(9) 𝛾(𝑉, ℎ) = arcsin
(
−𝐷 (𝑉)
𝑚 𝑔

)
,

während die im Segment abgebaute Höhe

(10) Δℎ(𝑉, ℎ) = 𝑙 𝑠𝑖𝑛(𝛾(𝑉, ℎ))

beträgt.
Alle relevanten Parameter sind in Tab. 1 zusammengefasst.

TAB 1. Verwendete Modellparameter.

𝑚 435 kg
𝑆ref 10 m2

𝑐D,0 0.0107
𝑘aero 0.062
𝜌0 1.225 kg/m3

d𝜌
dℎ 1.144 × 10−4 kg/m4

𝑔 9.81 N/kg

3. METHODEN

In diesem Abschnitt wird das zu lösende Optimierungspro-
blem spezifiziert, eine numerische Lösungsmethode vorge-
stellt und die Strategie zur Anfangswertschätzung erläutert.

3.1. Definition des Optimalsteuerungsproblems

Wie in Abschnitt 2.2 beschrieben, definiert ein eindeuti-
ger Parametersatz p (vgl. Gl. (4)) eine eindeutige Trajek-
torie T = 𝑓 (x0, p) vom Anfangspunkt x0 zum Endpunkt
xfin (x0, p). Die Parameter p bilden die Optimierungsvaria-
blen.
Der Aufsetzpunkt des anvisierten Notlandeplatzes weist die
Koordinaten bzw. den Zustand xtarg (Zielzustand, vgl. (1))
auf. Gesucht wird in der Parameteroptimierung der Parame-
tersatz, welcher die Trajektorie T zu diesem Aufsetzpunkt

beschreibt. Daher wird für die Parameteroptimierung fol-
gende Nebengleichheitsbedingung gesetzt:

(11) xfin (x0, p) − xtarg = 0

Es werden drei verschiedene Kostenfunktionen betrachtet.
Die erste Kostenfunktion 𝐽sp minimiert die Gesamtpfadlän-
ge, wobei der Index sp für „shortest path“ steht:

(12) min
p

𝐽sp =

4∑︁
𝑛=1

𝑙sn (p).

Die zweite Kostenfunktion 𝐽lp maximiert die Pfadlänge zur
Erzielung eines möglichst flachen Gleitwinkels, wobei der
Index lp für „longest path“ steht:

(13) max
p

𝐽lp =

4∑︁
𝑛=1

𝑙sn (p).

Eine dritte Zielfunktion 𝐽mV basiert auf der Summe der
Differenzen der Geschwindigkeiten zwischen den vier Seg-
menten 𝑠1, 𝑠2, 𝑠3 und 𝑠4, wobei der Index mV für „minimal
velocity difference“ steht:

(14) min
p

𝐽mV =

3∑︁
𝑛=1

|𝑉sn+1 (p) −𝑉sn (p) |

Mit dieser Kostenfunktion werden in der Flugtrajektorie
die Geschwindigkeitsunterschiede zwischen den Segmen-
ten minimiert.
Wie zuvor in Kap. 2.1 beschrieben, wird der Hängewinkel
auf den Bereich−45◦ ≤ 𝜇 ≤ +45◦ begrenzt. Desweiteren ist
die Geschwindigkeit auf Werte zwischen 𝑉min ≤ 𝑉 ≤ 𝑉max
limitiert. Für das letzte Geradensegment vor der Landung
𝑠4 wird zudem die Länge auf ein Mindestmaß 𝑙s4 ≥ 50m ge-
halten, um eine Stabilisierung des Landeanflugs zu ermög-
lichen. Diese Begrenzungen werden direkt als pmin bzw.
pmax als Grenzen für den Parametervektor p an den Opti-
mierungsalgorithmus übergeben.
Zur Lösung wird ein gradientbasierter, nichtlinearer Opti-
mierungsalgorithmus verwendet. Als Simulations- und Dar-
stellungsumgebung dient MATLAB [10], insbesondere die
Optimierungsfunktion fmincon von Matlab. Zur Reduk-
tion der Rechenzeit werden Modell und Nebenbedingungen
als mex-Funktionen (Matlab-Executables) kompiliert.

3.2. Initial Guess

Für den initial guess p0 (vgl. Gleichung (4)) wird in vor-
liegender Arbeit der DP [11] herangezogen. Der Dubins-
Pfad bezeichnet den kürzesten (zweidimensionalen) Pfad
zwischen Start- und Endkonfiguration (blaue bzw. grüne
Pfeile), der vereinfachend ausschließlich aus maximal zwei
Kreisbögen mit festem Radius (jeweils schwarze Bögen)
und einem Geradensegment (rote Linien) besteht (vgl. Abb.
2).
Durch die zusätzliche Reduktion des in Kap. 3.1 beschriebe-
nen Optimierungsproblems auf zwei laterale Dimensionen
(𝑥 und 𝑦) wird der kürzeste Pfad zwischen den Punkten x0
und xtarg ermittelt. Die in Abb. 1 gezeigte Trajektorie wird
um den Abschnitt 𝑠4 gekürzt. Mit anderen Worten wird der
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Abb. 2. Zwei beispielhafte Dubins Pfade.

Beginn der Landebahn und damit der Zielpunkt der Trajek-
torie um einen fixen Betrag entgegen der Landebahnrich-
tung nach vorn verschoben. Des Weiteren werden im Para-
metervektor p0 alle Geschwindigkeiten𝑉1 = 𝑉2 = 𝑉3 = 𝑉ini
mit der Initialisierungsgeschwindigkeit𝑉ini, alle Hängewin-
kel 𝜇1 = 𝜇2 = 𝜇3 = 𝜇max und und alle (Bogen-)Längen 𝑙1,
𝑙2 und 𝑙3 direkt auf Ergebnis-Längen aus dem Algorithmus
für den initial guess gesetzt. Bogenlänge 𝑙, Geschwindigkeit
und Hängewinkel hängen über Gleichung (3) zusammen.
Zur Verwendung des DP kommt die Toolbox [12, 13] zum
Einsatz. Mit dem so erzeugten „initial guess“ wird schließ-
lich die in Abschnitt 3.1 erläuterte Lösung des Optimie-
rungsproblems initialisiert.

4. ERGEBNISSE

In diesem Abschnitt werden verschiedene Problemkonstel-
lationen vorgestellt, um die Leistungsfähigkeit der vorge-
stellten Flugbahnoptimierungs-Methode zu demonstrieren.
Jede Konstellation ist definiert durch einen Anfangszustand
x0 und einen Zielpunkt xtarg, für die mindestens eine gültige
Trajektorienlösung ermittelt wird.

4.1. Konstellation 1

Für die erste Konstellation werden die in Tab. 2 aufgeführten
Start- und Zielzustände verwendet:

TAB 2. Konstellation 1 (Einheiten [m] bzw. [◦]).

𝑥n 𝑥e 𝑥alt Ψ

x0 −2100 250 450 110
xtarg 4 −3 0 285

Die Fluggeschwindigkeiten in den vier Abschnitten werden
𝑉min = 40 m

s und 𝑉max = 150 m
s festgelegt. Für den Hänge-

winkel in den beiden Kreissegmenten gilt |𝜇1 |, |𝜇3 | ≤ 45◦.
Die angewendete Kostenfunktion ist die Minimierung der
Gesamtpfadlänge (shortest path) nach Gleichung (12).
In Abb. 3 ist das Ergebnis der vorgestellten Methode für
Konstellation 1 zu sehen. Darin ist der DP in blau und die Er-
gebnistrajektorie nach der Optimierung in grün dargestellt.
Dazwischen zeigen graue Linien die Zwischentrajektorien
während der Konvergenz des Optimierungsverfahrens. Die
Wegpunkte (dargestellt mit grünen Dreiecken mit blauer
Umrandung) stellen die Verbindungspunkte zwischen den
Streckensegmenten und den Aufsetzpunkt auf der Lande-
bahn dar.

Abb. 3. Trajektorie für die Konstellation 1.

Erkennbar sind die fixen Radien des DP, die durch die
angehängte Optimierung noch angepasst werden. Zudem
wird der Abschnitt 𝑠4 durch die Optimierung verlängert –
wie später gezeigt wird – um Höhe abzubauen. Die Län-
ge des DP (zweidimensional, ohne Höhenverlauf) beträgt
2, 72km, die Länge der optimierten, dreidimensionalen Tra-
jektorie schließlich 2, 98km. Die Trajektorie wird durch die
Optimierung vor allem im Endteil (Segmente 𝑠3 und 𝑠4)
verlängert.
Abb. 4 zeigt den Höhenverlauf der Trajektorie, sowie die
Verläufe der Steuergrößen Geschwindigkeit in allen vier
Segmenten 𝑉1, 𝑉2, 𝑉3, 𝑉4 und die Hängewinkel in den bei-
den Kurvensegmenten 𝜇1 und 𝜇3. Gegenüber den Kurven-
segmenten weisen die beiden Geradensegmente 𝑠2 und 𝑠4
einen steileren Gleitwinkel auf. Der Höhenabbau erfolgt al-
so vor allem im Geradeausflug, und folglich ist auch die Ge-
schwindigkeit in den Geradensegmenten deutlich höher als
in den Kurvensegmenten. Dabei springt die Geschwindig-
keit zwischen den Kurven- und den Geradensegmenten zwi-
schen 𝑉min und 𝑉max. Ein Beschleunigen beziehungsweise
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Abb. 4. Verläufe Konstellation 1.

ein Verzögern um gut 100 m
s zwischen den Segmenten, wie

durch die Vereinfachung auf stationäre Segmente vorgese-
hen ist, bedarf in der Realität starker Höhenänderungen und
ist damit in der Realität nicht für eine Notfalltrajektorie an-
wendbar. Der Hängewinkel in den beiden Kurvensegmenten
liegt bei jeweils ca. −45◦ und damit nahe am Maximalwert,
der für die Optimierung erlaubt ist. Für Konstellation 1 lässt
sich vermuten, dass ein Kurvenflug möglichst kurz gehalten
werden sollte. Die Fluggeschwindigkeit ist in den Kurven
gering, der Hängewinkel groß, was mit Gleichung (2) einen
kleinen Radius bewirkt. Da der effektive Anteil der Kurven-
segmenten an der Gesamttrajektorienlänge gering ist, findet
der Höhenabbau vor allem in den Geradensegmenten statt.
Für Konstellation 1 wird im Versuch für die Ermittlung des
DP rund 0, 04s und für die Konvergenz der Optimierung
im Mittel 0.18s mit 110 Iterationen benötigt3. Ohne Initia-
lisierung des Problems mittels DP konvergiert das Problem
nicht.

4.2. Konstellation 2

Für die zweite Konstellation werden folgende Start- und
Zielzustände angenommen (vgl. Tab. 3):

TAB 3. Konstellation 2 (Einheiten [m] bzw. [◦]).

𝑥n 𝑥e 𝑥alt Ψ

x0 −2100 120 500 295
xtarg 4 −3 0 170

3Die verwendete Hardware ist dabei in Intel Core Ultra 7 mit 12 Kernen
(1, 7𝐺𝐻𝑧) , 32GB RAM und Matlab R2024a. Die Modell- und die
Nebenbedingungsfunktionen sind zur schnelleren Ausführung zu „mex“-
Funktionen [10] kompiliert.

Die angewendete Kostenfunktion ist nun die Maximierung
der Gesamtpfadlänge (longest path) nach (13) – gleichzu-
setzen mit einem Flug nahe der Fluggeschwindigkeit des
besten Gleitens 𝑉Emax . Schon vorab sei darauf hingewiesen,
dass der DP im Gegensatz zu dieser Kostenfunktion steht.
Dennoch funktioniert er gut als „initial guess“. Ohne DP
konvergiert dieses Problem nicht.

Abb. 5. Trajektorie für die Konstellation 2.

In Abb. 5 ist das Ergebnis der vorgestellten Methode für
Konstellation 2 dargestellt. Es ist zu sehen, dass die Länge
der Ergebnis-Trajektorie durch die Optimierung ausgehend
vom DP noch deutlich vergrößert wird. Im Vergleich zu
Konstellation 1 ist die Ausweitung der Trajektorie erheb-
lich, was grundsätzlich an der veränderten Kostenfunktion
in Konstellation 2 liegt. Die Länge des DP beträgt 2, 73km,
die Länge der maximierten Trajektorie mit 6, 80km. Wie zu
erwarten war, werden zugleich (und im ebenfalls im Gegen-
satz zu Konstellation 1) durch die Optimierung die Radien
der Kurvensegmente erhöht. Vor allem die Geradensegmen-
te 𝑠2 und 𝑠4 verlängern sich durch die Maximierung.
Abb. 6 zeigt den Höhenverlauf der Trajektorie, sowie die
Verläufe der Steuergrößen Geschwindigkeit in allen vier
Segmenten 𝑉1, 𝑉2, 𝑉3, 𝑉4, und die Hängewinkel in den bei-
den Kurvensegmenten 𝜇1 und 𝜇3. Gegenüber Konstellation
1 ist der Höhenverlauf weitestgehend linear, der Gleitwin-
kel in allen vier Segmenten ist annähernd gleich, der Abbau
der Höhe findet also gleichmäßig über die gesamte Trajek-
torie statt. Sprünge in der Fluggeschwindigkeit sind wei-
terhin vorhanden, insgesamt aber mit deutlich geringeren
Sprunghöhen. Der gesamte Geschwindigkeitsverlauf liegt
zwischen 𝑉1 = 𝑉2 = 𝑉3 = 𝑉4 = 58 . . . 65 m

s und damit nahe
an der Geschwindigkeit für das beste Gleiten4 𝑉Emax . Diese
liegt für die quadratische Polare mit den Parametern aus
Tab. 1 bei ca 60 m

s (vgl. Abb. 7). Im Gegensatz zu Konstel-
lation 1 ist die Geschwindigkeit in den Kurvensegmenten
etwas höher als in den Geradensegmenten. Der Abstand von
der Geschwindigkeit des besten Gleitens ist aber klein, der
Einfluss auf den Gleitwinkel vernachlässigbar, wie auch im

4Die Maximale Strecke im Gleitflug kann bei der Fluggeschwindigkeit
des besten Gleitens erlangt werden.
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Abb. 6. Verläufe Konstellation 2.

Höhenverlauf zu sehen ist. Die Hängewinkel in den beiden
Kurvensegmenten liegt zwischen 𝜇13 = −45 . . . 26◦. Durch
diese etwas höhere Geschwindigkeit ist der Kurvenradius
im Vergleich zu Konstellation 1 nach (2) größer.
Für Konstellation 2 wird im Versuch für die Ermittlung des
DP im Mittel 0, 033s und für die Konvergenz der Optimie-
rung 0.30s mit 87 Iterationen benötigt.

4.3. Konstellation 3

Mit diesem Beispiel werden die drei Kostenfunktionen (12),
(13) und (14) miteinander verglichen. Für die dritte Kon-
stellation werden folgende Start- und Zielzustände ange-
nommen (vgl. Tab. 4):

TAB 4. Konstellation 1 (Einheiten [m] bzw. [◦]).

𝑥n 𝑥e 𝑥alt Ψ

x0 −2100 250 450 285
xtarg 4 −3 0 285

Abb. 8 zeigt die Verläufe der Ergebnistrajektorien für die
drei Kostenfunktionen kürzester Pfad bzw. shortest path
(sp) nach (12), längster Pfad bzw. longest path (lp) nach
(13) und minimale Differenzen der Geschwindigkeiten mi-
nimum velocity difference (mV) nach (14). Die mit Ab-
stand kürzeste Trajektorie ist erwartungsgemäß die für die
Kostenfunktion sp. Sie verläuft auf der nahezu kürzesten
Verbindung zur Landebahn. Am weitesten holt die Trajek-

Abb. 7. Gleitzahl über der Fluggeschwindigkeit (die Flugge-
schwindigkeit ist die wahre Fluggeschwindigkeit ge-
genüber den Luftteilchen (𝑉TAS) ) für verschiedene
Flughöhen (0 . . . 500 . . . 1000m).

Abb. 8. Trajektorie für die Konstellation 3.

torie für lp aus auf dem Weg zur Landebahn. Dazwischen
liegt die Trajektorie für mV beginnend mit einem auffallend
weiten Bogensegment zu Beginn der Trajektorie.
Die Gesamtlängen für den DP und die drei Trajektorien
belaufen sich dabei auf (vgl. Tab. 5):

TAB 5. Konstellation 3 Vergleich der Trajektorienlängen.

Trajektorie Länge

Dubins 2, 47km
sp 3, 22km
lp 7, 67km
mV 6, 46km

Abb. 9 zeigt den Höhenverlauf für die drei Vergleichstra-
jektorien, sowie die Verläufe der Steuergrößen Geschwin-
digkeit in allen vier Segmenten 𝑉1, 𝑉2, 𝑉3, 𝑉4 und die Hän-
gewinkel in den beiden Kurvensegmenten 𝜇1 und 𝜇3. Auch
wie in Konstellation 1 sind die Geschwindigkeitssprünge
für sp erheblich, der zugehörige Höhenverlauf entsprechend
mit variierendem Bahnwinkel. Die Geschwindigkeit in den
Kurvensegmenten 𝑠1 und 𝑠3 ist gering, dagegen in den Ge-
radensegmenten 𝑠2 und 𝑠4 hoch, wie schon in Konstellation
1 zu sehen war.
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Abb. 9. Verläufe Konstellation 3.

Die Trajektorie für lp überwindet die längste Strecke. Der
Höhenverlauf bleibt dabei weitestgehend linear, nur das
letzte Segment 𝑠4 ist etwas flacher. Geschwindigkeitssprün-
ge sind zwar vorhanden, aber im Vergleich zur Trajektorie
für sp deutlich geringer ausgeprägt. Außerdem befindet sich
die Geschwindigkeit während des Verlaufs näher an der Ge-
schwindigkeit des besten Gleitens 𝑉Emax ≈ 60 m

s . Auffällig
geradlinig ist der Höhenverlauf bei der Trajektorie mV, die
Geschwindigkeit ist, wie zu erwarten, konstant über die gan-
ze Trajektorie. Die Kostenfunktion (14) eignet sich im Ein-
satz folglich gut, um Geschwindigkeitssprünge zwischen
allen Segmenten zu minimieren. Es sei jedoch darauf hin-
gewiesen, dass die Geschwindigkeit sich genau am unteren
Rand 𝑉min befindet. Aus Sicherheitsgründen, sollte diese
Grenze angehoben werden.
Abschließend werden in Tab. 6 für Konstellation 3 und alle
drei Kostenfunktionen die Berechnungs- und Konvergenz-
daten verglichen. Es ist zu sehen, dass das Problem für
Kostenfunktion mV am schnellsten konvergiert und dafür
am wenigsten Iterationen benötigt werden. Die Dauer zur
Ermittlung für den DP ist rein theoretisch für alle drei Ko-
stenfunktionen gleich. Insgesamt liegt die Dauer für die vor-
gestellte Methode für alle drei Kostenfunktionen bei unter
0, 3s. Die optimalen Flugtrajektorien können ausreichend
schnell berechnet werden, um im Rahmen von schnellen
Entscheidungsprozessen in Notsituationen in vertretbarer
Zeit sicher angewendet werden zu können, da es sich bei
einer Notlandung um eine strategische und nicht reaktive
Maßnahme handelt.

TAB 6. Vergleich Performance Konstellation 3.

K
on

st
el

la
tio

n

D
au

er
D

ub
in

s

D
au

er
O

pt
i.

It
er

at
io

ne
n

1 0, 030s 0, 22s 169
2 0, 025s 0, 16s 154
3 0, 028s 0, 11s 104

5. DISKUSSION

In der Arbeit wurde eine Approximation von Trajektorien
durch eine Abfolge einfacher geometrischer Formen, Ge-
raden und Kreissegmente vorgestellt. Zur Erzeugung einer
Notfalltrajektorie werden dabei zwei Kurvensegmente und
zwei Geradensegmente verwendet mit jeweils konstanter
Geschwindigkeit und Hängewinkel. Mithilfe eines Opti-
mierungsalgorithmus können die Parameter der approxi-
mierten Trajektorie so bestimmt werden, dass ein Zielpunkt
erreicht wird. Das Optimierungsproblem muss initialisiert
werden, wofür ein zweidimensionaler DP angewendet wird.
Ohne die Initialisierung ist eine Konvergenz deutlich un-
wahrscheinlicher. Es wurden verschiedene Kostenfunktio-
nen vorgestellt und miteinander verglichen. Dabei zeigte
sich, dass eine Initialisierung mit DP das Konvergenzver-
halten des Algorithmus überhaupt erst ermöglicht. Trajek-
torien für den kürzesten Weg zum Zielpunkt weisen star-
ke Geschwindigkeitssprünge auf und sind daher für reale
Anwendungen ungeeignet. Trajektorien für den weitesten
Weg zum Zielpunkt liefern deutlich bessere, jedoch eben-
falls nicht optimale Ergebnisse. Vielversprechend ist hinge-
gen eine Kostenfunktion zur Minimierung der Geschwin-
digkeitsunterschiede zwischen den einzelnen Segmenten.
Für die untersuchten Konstellationen und Kostenfunktio-
nen konnte gezeigt werden, dass der vorgestellte Algorith-
mus mit DP-Initialisierung ausreichend schnell (< 0, 3s)
und stabil konvergiert und damit für die kurzfristige Erzeu-
gung von Notlandetrajektorien gut geeignet ist.
Um die Konvergenz-Fähigkeit sicherstellen zu können, wer-
den im nächsten Schritt Monte-Carlo-Simulationen mit zu-
fällig erzeugten Konstellationen durchgeführt. Dabei ist von
großem Interesse, zu welchen Anteilen welche der drei Ko-
stenfunktionen zu sinnvollen Ergebnissen führt und welche
der drei Kostenfunktionen für die Anwendung bevorzugt
zum Einsatz kommen sollte. Des Weiteren sollen analy-
tisch beschriebene Geschwindigkeitsübergänge zwischen
den Segmenten und Übergänge des Hängewinkels unter-
sucht und implementiert werden.
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