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Zusammenfassung 
In dieser Abhandlung wird ein Vorgehen zur Erstellung von analytischen Mehrkörpermodellen für Tiltrotor 
VTOL beschrieben.  Hierbei liegt der Fokus auf der Ausleitung verschiedener Detaillierungsgrade für diverse 
Aufgaben des mechatronischen Entwurfs und der einfachen Übertragbarkeit auf unterschiedliche Fluggeräte. 

1. EINLEITUNG

Im Fraunhofer-Leitprojekt Albacopter® wurde ein Tiltrotor 
VTOL für den Transport von Gütern zu entwickelt. Die ma-
ximale Abflugmasse des Fluggeräts liegt bei 150 kg. Die 
risikoarme Entwicklung und Inbetriebnahme des Fluggerä-
tes stellen eine wesentliche Rahmenbedingung im Projekt 
dar.  Daher werden im Projekt Fluggeräte unterschiedlicher 
Skalierung eingesetzt (BILD 1).  

BILD 1. Albacopter 0.1 und Albacopter 0.5 auf einem 
3DoF-Prüfstand 

Neben der modularen Systemarchitektur der Teilsysteme 
[1], ist ein wesentlicher Bestandteil der mechatronischen 
Synthese der Tiltrotor VTOL Fluggeräte das modellbasierte 
Vorgehen zur Auslegung und Erprobung der Regelungs-
technik [2] und zur Auslegung der Aktorik. Ein automatisier-
tes Vorgehen zur Generierung der Bewegungsgleichungen 
in verschiedenen Modellierungstiefen kann einen wichtigen 
Beitrag leisten. Die Motivation der verschiedenen Detaillie-
rungsgrade liegt in differenzierten Modellanforderungen un-
ter Berücksichtigung der Berechnungszeit und der physika-
lischen Detailtiefe der Modelle. Hierbei kann zum Beispiel 
zwischen Echtzeitanwendungen, Modellen für Optimie-
rungsprozesse und detaillierten Modellen zur Untersu-
chung spezifischer Phänomene unterschieden werden. 
Durch die automatische Generierung ergibt sich neben dem 
zeitlichen Vorteil auch der Vorteil der Konsistenz zwischen 

den Detaillierungsebenen. Darüber hinaus kann von einer 
erhöhten Sicherheit in der Korrektheit des generierten Mo-
dells, gegenüber einer klassischen Modellierung, ausge-
gangen werden, da dieses aus bereits abgesicherten wie-
derkehrenden Elementen erzeugt wird. Für die Synthese 
von Reglern und Beobachtern kann es hilfreich sein, dass 
die Bewegungsgleichungen in symbolischer Form vorlie-
gen. Hierzu wird in dieser Abhandlung ein Vorgehen be-
schrieben, mit dem detaillierte Mehrkörpermodelle (MKS-
Modelle) mit diskretisierten flexiblen Flügeln, einfachere 
MKS-Modelle mit massebehafteten Scheiben als 
Schwenkrotoren (BILD 2), und Einmassen-Fluggerätmo-
delle erzeugt werden können. 

BILD 2. Vektorketten und Köper des MKS-Modells 

2. STAND DER TECHNIK

Der Stand der Technik weist bereits einige Veröffentlichun-
gen auf, in denen das Prinzip nach Jourdain in der Luftfahrt 
Anwendung findet. Ohne Anspruch auf Vollständigkeit wer-
den nachfolgend einige genannt und eingeordnet. In [3] 
wird ein Vorgehen zur Modellbildung mittels Jourdain für ein 
Flugzeug mit zwei Antrieben beschrieben. In [4] wird ein 
Vorgehen zur Modellbildung mittels Jourdain für das Fahr-
werk eines normalen Flugzeugs aufgezeigt. Diese Veröf-
fentlichungen betrachten das Verhalten der Steuerbarkeit 
des Systems auf dem Boden. [5] und [6] beschreiben die 
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Modellbildung für einen kleinen Helikopter mittels des Prin-
zips von Jourdain. Hier fehlt der Aspekt des Tragflächen-
flugs in der Betrachtung. In [7] wird die Modellbildung nach 
Kane für ein Tiltrotor VTOL beschrieben. Mathematisch 
führt das Verfahren nach Kane auf dieselben Bewegungs-
gleichungen wie das Prinzip von Jourdain [8]. Wie in [8] be-
schrieben, kann das Prinzip von Jourdain einfacher auf 
Systeme angewendet werden.  

Diese Abhandlung hebt sich gegenüber dem Stand der 
Technik in der Form ab, dass ein Verfahren zur automati-
sierten Generierung der Bewegungsgleichungen für unter-
schiedliche Modellierungstiefen eines Tiltrotor VTOL be-
schrieben wird. Das Besondere an den generierten Model-
len liegt darin, dass diese auch in analytischen 
Gleichungen ausgeleitet werden. Darüber hinaus 
unterscheiden sich die hier erzeugten Modelle dadurch, 
dass auch Modellie-rungstiefen betrachtet werden, die 
ebenso Struktursteifig-keiten des VTOL berücksichtigen. 

3. WERKZEUGEBENE

In diesem Kapitel werden das Vorgehen und die genutzten 
Grundlagen zur Modellierung von Flugsystemen vorge-
stellt. Darüber hinaus werden die verwendeten Lösungsele-
mente zur Systemmodellierung und die Methodik zur Ge-
nerierung der symbolischen/teilsymbolischen Differential-
gleichung des Systems erläutert. Ein weiterer betrachteter 
Aspekt ist die automatische Generierung eines Simscape-
Modells zur Validierung und Visualisierung. Es wird darüber 
hinaus auf die Generierung von Artefakten zur Erklärbarkeit 
der Systemdifferentialgleichungen eingegangen. 

Um komplexe Mehrkörpersysteme modellieren zu können, 
ist eine durchgängige Notation zwischen mathematischer 
Notation und der Computernotation nötig. Hier findet die 
Notation aus BILD 3 Anwendung. In dem abgedruckten 
Bei-spiel wird die zeitliche Ableitung des Ortsvektors von f 
nach p2, der im Koordinatensystem b dargestellt ist, mittels 
der Rotationsmatrix ௙௕𝐴 in das Koordinatensystem f 
transformiert. In BILD 2 ist beispielhaft eine Vektorkette zu 
den einzelnen Körpern des Mehrköpermodells gezeigt. 

Die betrachteten technischen Systeme haben die topologi-
sche Eigenschaft, dass es keine geschlossenen 
Wirkketten gibt. Hieraus resultiert, dass die 
Gelenkkonfiguration ein-fach mittels der Minimalkoordinate 𝒒 abbildbar ist. Die ers-ten sechs Einträge sind bei den 
Flugsystemen hier die sechs Freiheitsgrade im Raum. 

(1) 𝒒 ൌ  ሾ𝑥 𝑦 𝑧 φ θ ψ … ⋮ሿᇱ
Zum Aufstellen der Bewegungsdifferentialgleichungen 
kann nun das Prinzip nach Jourdain in der Form von Glei-
chung (2) Anwendung finden. 

(2) ∑ 𝑱௚ ்௜் ∙ ൫ 𝒑ሶ௚ ௜ − 𝑭௚ ௜௘൯ᇣᇧᇧᇧᇤᇧᇧᇧᇥ𝑭೒ ೔ೝ
൅ 𝑱௞೔ ோ௜் ∙ ቀ 𝑳ሶ௞೔ ௜ሺ஼೔ሻ − 𝑴௞೔ ௜௘ሺ஼೔ሻቁᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ𝑴ೖ೔ ೔ೝ൫಴೔൯

௡௜ୀଵ ൌ 0 

Hierbei wird für 𝑛 Körper des Systems je ein Summand ge-
bildet. Die translatorische virtuelle Leistung des Körpers 𝑖 
wird dabei mittels der Jacobimatrix der Translation 𝑱௚ ்௜  in 
dem Inertialkoordinatensystem 𝑔 und den reaktiven Kräften 𝑭௚ ௜௥, die auf den Köper wirken, berechnet. Die reaktiven 

Kräfte lassen sich wiederum durch den Impuls 𝒑ሶ௚ ௜  und die 
eingeprägten Kräfte 𝑭௚ ௜௘ berechnen. 

BILD 3. Notation 

Für die Rotation wird die virtuelle Leistung analog in den 
köperfesten Koordinaten 𝑘௜ berechnet. Hierbei werden der 
Drehimpuls 𝑳ሶ௞೔ ௜ሺ஼೔ሻ  und die eingeprägten Momente 𝑴௞೔ ௜௘ሺ஼೔ሻ
bezüglich des Köperschwerpunkts ሺ𝐶௜ሻ genutzt. 

Die Jacobimatrizen sind durch (3) und (4) definiert. 

(3) 𝑱௚ ்௜ ൌ ቀడ 𝒓೒ ಴೔ డ𝒒 ቁ 
(4) 𝑱௞೔ ோ௜ ൌ ቆడ 𝝎ೖ೔೒ೖ೔ ೔డ𝒒ሶ ቇ  

Der Impuls ist durch (5) definiert. 

(5) 𝒑ሶ௚ ௜ ൌ 𝑚௜ 𝒓ሷ௚ ஼೔ 
Der Drehimpuls ist durch (6) bestimmt.

(6) 𝑳ሶ௞೔ ௜ሺ஼೔ሻ ൌ 𝑰௞೔ ௜ሺ஼೔ሻ 𝝎ሶ௞೔௚௞೔ ௜ ൅ 𝝎෥௞೔௚௞೔ ௜  𝑰௞೔ ௜ሺ஼೔ሻ 𝝎௞೔௚௞೔ ௜
3.1. Lösungselemente 

Aus der topologischen Eigenschaft der offenen Gelenkket-
ten (BILD 2) kann das System durch einen Baum beschrie-
ben werden. Zur Beschreibung des VTOL durch ein Baum-
diagramm werden generische Lösungselemente verwen-
det. Diese sollen die entsprechenden Größen und Teilglei-
chungen aus (2), (5) und (6) ermitteln. Das angewendete 
Prinzip liegt darin, dass aus einer Basisklasse die einzelnen 
Lösungselemente erben und mittels Funktionsüberladung 
spezifische Funktionalitäten erfüllen (BILD 4).  

BILD 4. Klassendiagramm 

Im Folgenden werden auf die implementierten Lösungsele-
mente erläutert. 

Die Koordinatenursprungsklasse (mks_inertial) 
stellt das Inertialkoordinatensystem 𝑔 dar. In der Baumto-
pologie bildet ein Objekt dieser Klasse die Wurzel des 
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Baums. Weiter wird es im Simscape-Modell für die Para-
metrieung des Solvers genutzt. Es wird hier die Annahme 
einer flachen Erde für die Modellierung getroffen.  

Die Koordinatentransformationsklasse  
(mks_transform) stellt einen Vektor und eine Koordinaten-
rotation zwischen den baumseitigen Vaterobjekten und den 
Töchterelementen dar.  
Diese Koordinatentransformation kann hierbei konstant 
sein, durch Minimalkoordinaten beschrieben sein oder 
durch eine Mischung beider Varianten zustande kommen. 
Im Sonderfall, dass einer Koordinatentransformation kein 
Körper als Tochter im Baum folgt, kann auch ein Syste-
meingang die Transformation beschreiben. Die Klasse 
identifiziert die entsprechenden Freiheitsgrade und Syste-
meingänge und stellt diese für die Bildung des Vektors der 
Minimalkoordinaten bereit. Die Klasse wird dazu genutzt, 
die entsprechende Vektorkette von den Inertialkoordinaten 
zu den Töchterelementen, sowie die zugehörigen Drehmat-
rizen zu berechnen. Dabei wird das väterseitige Eingangs-
koordinatensystem als 𝑏௜ und das töchterseitige Ausgangs-
koordinatensystem als  𝑓௜ bezeichnet. 
Es werden hier ebenso die Ableitungen, Winkelgeschwin-
digkeiten und Jacobimatrizen berechnet.  
Die Klasse wird zudem genutzt, um Kräfte und Momente 
vom Töchterkoordinatensystem in das Vaterkoordinaten-
system zu transformieren. 

Die Körperklasse (mks_mass) 
dient dazu, den einzelnen Summanden aus Gleichung (2) 
für den jeweiligen Körper zu erstellen und schlussendlich 
die Summation der Teilgleichungen aus allen Töchterkör-
pern im Baum vorzunehmen.  Die wichtigsten Eigenschaf-
ten eines Körpers sind dabei seine Masse und der Träg-
heitstensor. Das Eingangskoordinatensystem zeigt dabei 
stets auf den Masseschwerpunkt. 

Die Kraftklasse (mks_force) 
wird zur Darstellung von eingeprägten Kräften und Momen-
ten im System genutzt. Die Kräfte und Momente können 
dabei sowohl Funktionen aus den Minimalkoordinaten und 
deren Ableitungen als auch Funktionen der Systemein-
gänge sein. So können zum Beispiel Feder-Dämpfer-Kräfte 
abgebildet werden. Die Kräfte und Momente werden in den 
jeweiligen Väterkoordinatensystemen dargestellt. Sie wir-
ken als eingeprägte generalisierte Kraft auf die nächsten 
Väterkörper im Baum. Um spezifische Kräfte am Tiltrotor 
VTOL aufwandsarm implementieren zu können, sind durch 
Vererbung noch detailliertere Kraftklassen implementiert. 

Die Kraftklasse in Inertialkoordinaten 
(mks_force_0) hat den Nutzen, die auf einen Körper wir-
kende Gewichtskraft in den Inertialkoordinaten zu formulie-
ren.  

Die Propellerklasse (mks_prop_quad) 
wird genutzt, um die Schubkraft und das Widerstandsmo-
ment eines Propellers 𝑖 zu ermitteln. Die Schubkraft wird 
mittels des Zusammenhangs (7) ermittelt.  

(7) 𝐹𝑖 = 𝐾்𝑖 𝜔௜ଶ −  ห𝐾௏𝑖 ሾ0 0 1ሿ 𝒗௉೔ ௉೔௔  𝜔௜ห
Parametriert wird die Kennlinie über den Parameter 𝐾்௜ für 
die quadratische Schubkennlinie und 𝐾௏௜ als Abschwä-
chungsfaktor für den einlaufenden Luftstrom in die Propel-
lerebene. Hierbei ist 𝒗௉೔ ௉೔௔  die Relativgeschwindigkeit zwi-
schen dem aerodynamischen Koordinatensystem 𝑎 und 
der Propellernabe 𝑃௜ im propellerfesten Koordinatensystem 𝑃௜. Die Größe 𝜔௜ beschreibt die Rotationsgeschwindigkeit 
des Propellers und lässt sich durch (8) ausdrücken.  

Das Widerstandsmoment des Propellers kann mittels des 
Momentenparameters 𝐾ெ௜ und der Gleichung (9) berechnet 
werden. 
(8) 𝜔௜ = ሾ0 0 1ሿ 𝝎௉೔ ௚௉೔ 
(9) 𝑀௜ = 𝐾ெ௜  𝜔௜ଶ
Die Flügelelementklasse (mks_wing) 
dient zur Berechnung der Auftriebs- und Widerstandskräfte 
eines Tragflächenelements, sowie des an der Tragfläche 
wirkenden Moments. Hierbei wird im Gegensatz zu [9] nicht 
das vollständige System betrachtet, es findet vielmehr eine 
Zerteilung in einzelne Flügelelementstücke zur Modellbil-
dung statt BILD 10. Die Berechnung der Kräfte und Mo-
mente wird wie in [10, p. 442] beschrieben durchgeführt.  
Es ergibt sich für die Kraft am 𝑖-ten Flügelelement der linken 
Haupttragfläche 𝑤𝐿𝑖 der funktionale Zusammenhang (10). 
Dabei stellt 𝜂௪௅௜ den Klappenwinkel dar, 𝑐௅,௪௅௜ die Auftriebs-
kennlinie, und 𝑐஽,௪௅௜ die Widerstandskennlinie. Die Para-
meter 𝐴௪௅௜ , 𝜆௞,௪௅௜ , 𝑙ఓ,௪௅௜ , 𝑙ி௟௔௣,௪௅௜ , 𝜅௪௅௜ sind geometrische 
Parameter und Korrekturfaktoren zur Berechnung der 
Kräfte. 

(10) 𝑭௪௅௜ ௪௅௜௘ = 𝒇 ൬ 𝒗௪௅௜ ௪௅௜,௔ ,   𝜂௪௅௜ , 𝜌, 𝑐௅,௪௅௜ , 𝑐஽,௪௅௜ ,⋯𝐴௪௅௜ , 𝜆௞,௪௅௜ , 𝑙ఓ,௪௅௜ , 𝑙ி௟௔௣,௪௅௜ , 𝜅௪௅௜  ൰
Die Momente können analog mit der Funktion (11) berech-
net werden. 

(11) 𝑴௪௅௜ ௪௅௜௘ = 𝒇 ൬ 𝒗௪௅௜ ௪௅௜,௔ ,   𝜂௪௅௜ , 𝜌, 𝑐ெ,௪௅௜ ,⋯𝐴௪௅௜ , 𝜆௞,௪௅௜ , 𝑙ఓ,௪௅௜ , 𝑙ி௟௔௣,௪௅௜ , 𝜅௪௅௜  ൰
Die Kräfte und Momente werden hierzu in den tragflächen-
elementspezifischen Koordinaten dargestellt. Zur Berech-
nung der Anströmgeschwindigkeit und des Anstellwinkels 
werden dabei nur die Vektorkomponenten in der xz-Ebene 
des Tragflächenelements berücksichtigt. Durch die Unter-
teilung der Tragfläche in kleine Teilstücke wird beispiels-
weise die aerodynamische Dämpfung durch die unter-
schiedlichen Geschwindigkeiten der Tragflächenelemente 
beim Rollen des Systems berücksichtigt. In [11] wurde be-
reits ein ähnlicher Ansatz zur elementbasierten Berech-
nung der Aerodynamik beschrieben. In diesem Fall werden 
jedoch die Koordinatentransformationen durch die Baum-
struktur aus dem Element in die Gesamttopologie verlagert. 
Es findet eine stärkere Funktionstrennung statt. Der aero-
dynamische Einfluss zwischen den Elementen wird in der 
Flügelelementklasse vernachlässigt. 

Die Widerstandselementklasse (mks_drag) 
berechnet einen aerodynamischen Ersatzwiderstand für 
beispielsweise den Rumpf des VTOL. Hierzu wird die The-
orie der schrägangeströmten Platte verwendet. Wobei auch 
hier, wie beim Flügelelement nur die xz-Ebene des Ele-
ments berücksichtigt wird. Die Widerstandskennlinie des 
Rumpfelements D𝑖 wird durch (12) abgebildet. Der Auftrieb 
der Platte wird nicht berücksichtigt. 
(12) 𝑐஽,஽௜ = 0.05 + 1.18 sin𝛼஽௜ଶ
Die Sensorelemente dienen zur Implementierung von zu-
sätzlichen Systemausgängen, welche nicht direkt die Zu-
standsgrößen des Systems sind, sondern durch Ausgangs-
gleichungen aus den Zustandsgrößen indirekt berechnet 
werden.  

Die Inertialemesseinheitsklasse (mks_imu) 
dient zur Ausleitung und Berechnung der typischen Größen 
einer IMU. Die Lage und Orientierung der IMU im System 
wird durch das Väterkoordinatensystem definiert. Darüber 
hinaus wird auch die entsprechende Position des Elements 
in globalen Koordinaten dem Systemausgang hinzugefügt. 
Es können durch die eindeutige Benennung des Elements 
auch mehrere IMU-Elemente im System verbaut werden. 
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Die Anströmsensorklasse (mks_airspeed) 
berechnet die Relativgeschwindigkeit der Luft gegenüber 
dem Sensor in den elementfesten Koordinaten. Hierbei wird 
die Relativgeschwindigkeit in den Komponenten des Koor-
dinatensystems zu den Systemausgängen hinzugefügt. 

Die Zusatzdynamikklasse (mks_dgl)  
wird zur Abbildung von weiteren Teilsystemdynamiken des 
VTOLs verwendet. Dies können beispielsweise elektrische 
Teilsysteme mit eigenen Dynamiken, wie Batterien, An-
triebsmotoren oder Servoantriebe sein. Hierrunter fallen 
auch die I-Anteile der Regler. Die Klasse wird mit einem 
Vektor an Zustandsgrößen und der Differentialgleichung in-
stanziiert. Die topologische Einordnung im Baum ist für die 
Funktion nicht von Relevanz, für die Steigerung der Er-
klärbarkeit bietet sich eine Einordnung in der Nähe der zu-
gehörigen Lösungselemente des Mehrkörpersystems an. 

3.2. Vorgehen zur Generierung der Differential-
gleichungen des Mehrkörpersystems 

Die spezifische Generierung der Modellierungstiefe des 
VTOL-Modells wird in Kapitel 4 beschrieben. Liegt die spe-
zifische Topologie aus parametrierten Objekten in Form 
des Baums vor, so können durch eine Abfolge an rekursi-
ven Funktionsaufrufen die Bewegungsgleichungen erzeugt 
werden. Die benötigten Funktionen sind in der Basisklasse 
(mks_base) bereits angelegt und werden bei Bedarf durch 
Überschreiben um spezifische Funktionalität ergänzt.  

Es wird hier zwischen zwei Arten der Rekursion unterschie-
den. In der Rekursion-A wird zunächst die entsprechende 
Funktion des jeweiligen Objektes aufgerufen und erst dann 
die Funktionen der Töchterobjekte aufgerufen. Es werden 
die Funktionen aus der Richtung der Baumwurzel kom-
mend, in Richtung dessen Blättern fortschreitend ausge-
führt. Dieser rekursive Aufruf ist so gestaltet, dass der auf-
gerufenen Funktion Zeiger auf die Väterobjekte übergeben 
werden. Über diesen Zeiger ist der Zugriff auf Größen des 
Väterobjekts möglich. Die Rekursion-B ruft erst die Funkti-
onen der Töchterobjekte auf und erst nach dessen Ausfüh-
rung wird die Funktion des eigenen Objektes ausgeführt. 
Es werden die Funktionen aus Richtung der Blätter des 
Baums hin zur Wurzel ausgeführt. Dieser rekursive Aufruf 
ist so gestaltet, dass der aufgerufenen Funktion Zeiger auf 
die Töchterobjekte übergeben werden. So kann durch die 
aufgerufene Funktion auf Größen der Töchterobjekte zuge-
griffen werden. 

0a) Analyse massebehafteter Körper 
Durch die Rekursion-B wird analysiert, welchen Objekten 
ein massebehafteter Köper als Tochterelement im Baum 
folgt. Dieses Merkmal wird in den Objekten abgelegt. 

1a) Ermittlung der Minimalkoordinaten  
Der Vektor der Minimalkoordinaten 𝒒 des Mehrkörpersys-
tem wird durch Rekursion-B erzeugt. Hierzu findet in den 
Objekten der Koordinatentransformationsklasse eine Ana-
lyse der Parametrierung statt. Es wird geprüft, ob die jewei-
lige Richtung oder Rotation der Transformation von zeitlich 
variablen Größen abhängt und der Transformation ein Kör-
per als Tochterelement folgt. Ist dies der Fall, so ist die zeit-
lich variable Größe Teil der Minimalkoordinaten. 

2a) Ermittlung der Systemeingänge  
Durch die Rekursion-B kann nun der Vektor der Systemein-
gänge 𝒖 ermittelt werden. Systemeingänge stellen hierbei 
alle bisher nicht definierten symbolischen Variablen der Pa-
rametrierung der Elemente dar. Je nach zu untersuchender 

Fragestellung können dies neben klassischen Systemein-
gängen auch Designparameter wie Federsteifigkeiten oder 
Dämpfungen des Systems sein, die in verschiedenen Si-
mulationen variiert werden. 

3a) Berechnung der Vektorketten 
Mittels der Rekursion-A werden die Vektorketten zu den 
einzelnen Objekten im Baum aufgestellt (BILD 2). Dazu 
wird der Zusammenhang (13) genutzt.  
(13) 𝒓௚ ௚௙೔ = 𝒓௚ ௚௕೔ + 𝑨 ௚௕೔   𝒓௕೔ ௕೔௙೔  
Aus den Ortsvektoren, dargestellt im Inertialkoordinaten-
system, kann durch zeitliche Differentiation der symboli-
schen Gleichungen die Geschwindigkeit (14) und Be-
schleunigung (15) des entsprechenden Punktes ermittelt 
werden.  
(14) 𝒗௚௚ ௚௙೔ = 𝒓ሶ௚ ௚௙೔ 
(15) 𝒂௚௚ ௚௙೔ = 𝒓ሷ௚ ௚௙೔ 
Die Berechnung der Rotationsmatrix des Ausgangskoordi-
natensystems 𝑓௜  kann mittels (16) erflogen.
(16) 𝑨 ௚௙೔ = 𝑨 ௚௕೔   𝑨 ௕೔௙೔   
Die Berechnung der Winkelgeschwindigkeit erfolgt an-
schließend mittels (17). 
(17) 𝝎෥ ௚௙೔ ௙೔ = 𝑨 ᇱ ௚௙೔   𝑨ሶ   ௚௙೔
Abschließend wird die zeitliche Differentiation der Winkel-
geschwindigkeit 𝝎ሶ ௚௙೔ ௙೔  durch symbolische Differentiation 
ermittelt. Somit liegen nach der Rekursion für jeden Kno-
tenpunkt im System der Ortsvektor, die Geschwindigkeit 
und Beschleunigung als Funktion der Minimalkoordinaten 
vor. Für die rotatorischen Größen ist dies mit 𝑨 ௚௙೔ , 𝝎 ௚௙೔ ௙೔  
und 𝝎ሶ ௚௙೔ ௙೔  ebenso gegeben. 

4a) Berechnen der eingeprägten Kräfte 
Mittels der Rekursion-B werden nun im System die auf die 
jeweiligen Körper wirkenden eingeprägten Kräfte und Mo-
mente berechnet. Zum Beispiel werden zur Berechnung der 
Auftriebs- und Widerstandskraft eines Flügelelements die 
nun im Element vorliegenden Geschwindigkeitszusammen-
hänge aus (14) verwendet, um die Anströmgeschwindigkeit 
und den Anstellwinkel des Elements zu berechnen. 
Zur weiteren Verwendung der eingeprägten Kräfte und Mo-
mente in der Systemtopologie werden die Kräfte und Mo-
mente durch die Rekursion aufsummiert und im Fall einer 
Koordinatentransformation aus dem Ausgangskoordinaten-
system 𝑓௜  in das Eingangskoordinatensystem 𝑏௜ transfor-
miert (siehe Gleichung (18) und (19)).  

(18) 𝑭௕೔ ௜௘ = 𝑨 𝑏𝑖𝑓𝑖   𝑭௙೔ ௜௘ 
(19) 𝑴௕೔ ௜௘ሺ௕೔ሻ = 𝑨 𝑏𝑖𝑓𝑖   𝑴௙೔ ௜௘ሺ௙೔ሻ  + 𝒓𝑏𝑖 𝑏𝑖𝑓𝑖 × 𝑭௙೔ ௜௘ 
In einem Köperelement liegen somit nun die Summanden 
der eingeprägten Kräfte 𝑭௞೔ ௜௘ und Momente 𝑴௞೔ ௜௘ሺ஼೔ሻ, die auf
eben jenen wirken, vor (siehe (2)). Die eingeprägten Kräfte 
wirken per Definition nur den Körper, an dem sie angreifen. 
Der Köper, an dem die summierten, eingeprägten Kräfte 
wirken, ist immer der nächste Körper in Richtung der Wur-
zel des Baums. Daher werden die eingeprägten Kräfte für 
die weitere Rekursion durch die Körperklasse als Nullvektor 
an das jeweilige Vaterelement weitergegeben. 

4b) Aufstellen und Summieren der Teilsummanden 
In den Körperelementen liegen nun alle mathematischen 
Größen vor, um den jeweiligen Summanden aus Gleichung 
(2) zu berechnen.  Hierrunter fallen die auf das jeweilige
Element wirkenden eingeprägten Kräfte und Momente und
die Lage und Orientierungsgrößen sowie deren Ableitun-
gen. Zur Berechnung der Teilsummanden, werden zu-
nächst der Impuls- und der Drehimpuls durch (5) und (6)
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bestimmt und anschließend die Jacobimatrizen mittels (3) 
und (4) ermittelt. Mittels der Rekursion-B werden diese 
Summanden über den Baum hinweg summiert und liegen 
anschließend in der Wurzel als Gesamtsumme vor. 

5a) Aufstellen der Differentialgleichung des MKS 
Das zu Null setzen der in der Wurzel des Baums vorliegen-
den Summe aus 4b) erzeugt nun die Bewegungsdifferenti-
algleichung nach Jourdain aus Gleichung (2). 

6a) Ausleiten von zusätzlichen Systemausgängen 
Um neben den Zuständen des Systems noch weitere Aus-
gangsgleichungen definieren zu können, wird mittels der 
Rekursion-B ein weiterer Vektor mit Systemausgangsglei-
chungen gebildet. Hier können Größen der IMU oder der 
Pitotsonde enthalten sein. 

7a) Reduktion der Differentialgleichungsordnung 
Um ein einheitliches Simulinkmodell zur Simulation der Dif-
ferentialgleichung nutzen zu können, wird diese auf eine 
ODE erster Ordnung reduziert. Darüber hinaus werden die 
neuen Zustandsgrößen 𝒙 nach dem Benennungsschema 
auf BILD 3 benannt. 

7b) Massen-Matrix-Form 
Zur Verwendung wird die ODE erster Ordnung nun in die 
Massen-Matrix-Form überführt. Anschließend werden die 
Matrizen als Matlabfunktionen ausgeleitet. Es entstehen 
die Funktionen ODE_Mሺt,xሻ, ODE_Fሺt,x,uሻ und ODE_Gሺt,dx,x,uሻ. Mit diesen kann mittels der Gleichung (20) 
das neue 𝒅𝒙 berechnet werden. 
(20) d𝒙 = ODE_Mሺt, xሻ ∙ ODE_Fሺt, x, uሻ−1
Der Ausgang des Systems ist durch (21) definiert.
(21) 𝒚 = ODE_Gሺ𝑡, d𝑥,𝑥,𝑢ሻ
Nun kann das System mittels des Simulationsmodells 
(BILD 5) simuliert werden. 

BILD 5. Simulationsmodell 

3.3. Vorgehen zur Ergänzung um die Differenti-
algleichungen der Zusatzdynamiken 

In diesem Kapitel wird die Erweiterung des Vorgehens aus 
dem vorrangegangenen Kapitel um die zusätzlichen Sys-
temdynamiken beliebiger Ordnung erläutert. Dazu werden 
die folgenden Prozessschritte im vorrangegangenen Vor-
gehen ergänzt.  

1b) Zusätzliche Zustandsgrößen ermitteln 
Der Gesamtvektor der Zustandsgrößen 𝑥௥௘௦௧, der die Dyna-
miken aus den Objekten der Zusatzdynamikklasse enthält, 
wird durch Rekursion-B erzeugt. 

4c) Vektor mit Zusatzdifferentialgleichungen 
Mittels der Rekursion-B wird der Satz der Zusatzdifferenti-
algleichungen erzeugt. Alle Zusatzdifferentialgleichungen 
liegen schlussendlich in der Wurzel des Baums vor. 

5b) Zusammenführen der Zustandsvariablen 
Die Minimalkoordinaten 𝒒 und 𝒙௥௘௦௧ bilden zusammen ei-
nen Gesamtvektor. 

5c) Zusammenführen der Differentialgleichungen 
Die Differentialgleichungen aus dem MKS-System werden 
mit den Zusatzdifferentialgleichungen in einem Vektor zu-
sammengeführt. 

Durch diese Erweiterung können nun auch nicht aus der 
Mehrköperdynamik stammende Systemdynamiken simu-
liert werden. 

3.4. Generierung eines topologischen Modells 
in Simscape 

Zur Modellvalidierung mittels Simulation wird zusätzlich zu 
dem analytisch aufgestellten Modell ein Zwillingsmodell in 
Simscape automatisiert erstellt. Dieses Simscape Modell 
dient auch der anschaulichen dreidimensionalen Visualisie-
rung des Systemverhaltens mittels des Simscape Multi-
body Explorers. So können Parametrierungsfehler der Ko-
ordinatentransformationen einfacher identifiziert werden. 

Die Generierung des Simscape Modells wird ähnlich zur 
Generierung des analytischen Modells durch rekursive 
Funktionsaufrufe über die Elemente im Baum durchgeführt. 
Es wird zunächst die Größe der einzelnen Systemblöcke 
ermittelt. Hierbei sind die Anzahl der Eingangs- und Aus-
gangsgrößen der einzelnen Lösungselemente maßgebend 
für die Blockhöhe. Anschließend werden die Lösungsele-
mente aus einer Bibliothek BILD 6 entnommen, im Baum 
platziert, parametriert und entsprechend der Parametrie-
rung angepasst. 

BILD 6. Simscape Bibliothek 

Hierzu wird die Rekursion-A verwendet. Der Base-Konnek-
tor des jeweiligen Blocks wird dabei über eine ungerichtete 
Verbindung mit dem Follower-Konnektor des Vaterele-
ments verknüpft. Neben dieser Verbindung kann ein Block 
weitere Eingänge aufweisen. Dies können der Systemein-
gang 𝒖, Minimalkoordinaten 𝒒 und deren Ableitungen 𝒒ሶ , 𝒒ሷ  
sowie zusätzlichen Systemzustände 𝒙௥௘௦௧ und deren Ablei-
tung 𝒙ሶ ௥௘௦௧ sein. Die Elementeingänge werden bis auf den 
Systemeingang 𝒖 durch From-Blöcke realisiert (BILD 7). 

Die Blockausgänge variieren je nach Elementklasse. Allge-
mein wird ein Ausgang mit einem spezifischen Datum des 
Ausgangsbusses verbunden und mit einem GoTo-Block mit 
lokaler Sichtbarkeit zur weiteren Verwendung im Simscape 
Modell verknüpft. Bei Koordinatentransformationen mit Ge-
lenken stellen die Minimalkoordinaten und deren 
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Ableitungen die Blockausgänge dar. Im Fall der Zusatzdy-
namikklasse sind die Ausgänge durch die in den Differenti-
algleichungen verwendeten Systemzustände und deren 
Ableitungen definiert. Die Sensorelemente haben ihre an-
wendungsspezifischen Ausgänge. 

BILD 7. Ein- und Ausgänge 

Um die Zusatzdifferentialgleichungen, die Krafteingänge 
und die Koordinatentransformationen mit den jeweiligen 
spezifischen symbolischen Ausdrücken entsprechend der 
Parametrierung abbilden zu können, werden für diese ob-
jektspezifische Matlabfunktionen ausgeleitet. Dies können 
beispielsweise die Kraftgleichung eines Feder-Dämpfer-
Elements sein, aber auch Matlabfunktionen für die Umset-
zung einer Zusatzdifferentialgleichung. 

Die Koordinatentransformationen werden entsprechend 
der Parametrierung angepasst. In BILD 8 sind eine stati-
sche Koordinatentransformation (Trafo_wLf) und eine 
Transformation mit Gelenk um die y-Achse mit der zuge-
hörigen Minimalkoordinate 𝛿ଵ zu sehen (Trafo_fb1). Hierzu 
wird das Innere des Blockes entsprechend der Paramet-
rierung modifiziert. Es werden zum Beispiel nicht benötigte 
Ausgänge entfernt.  

BILD 8. Koordinatentransformationen 

Das generierte Simscape Modell unterscheidet sich in Be-
zug auf das analytisch generierte Modell nur in der Art des 
verwendeten Lösungsalgorithmus der Gleichungen. Bei 
dem analytischen Modell wird der Euleralgorithmus zur Si-
mulation verwendet. Da das Simscape Modell potenziell ein 
differential-algebraisches Gleichungssystem (DAE-
System) erzeugt verwendet es zunächst das Verfahren aus 
[12] um ein ODE-System zu generieren. Anschließend wird
das Modell simuliert.

3.5. Erklärbarkeit der Systemtopologie 

Um die Erklärbarkeit des Generats auch für das aus sym-
bolischen Gleichungen bestehende Modell für den Nutzer 
zu gewährleisten, wird durch die Werkzeugebene noch eine 
ASCI-Grafik der Baumtopologie des Systems erzeugt 
(BILD 9). Auch dieses Generat wird mittels rekursiver Funk-
tionsaufrufe im Baum und Funktionsüberladung der einzel-
nen Lösungselemente erzeugt. Die Komponenten werden 
dabei unter Berücksichtigung des Namens und des Typs, 
sowie der Eingänge und der Freiheitsgrade des Lösungs-
elements abgedruckt. So entsteht eine menschenlesbare 
Repräsentation der Topologie. 

BILD 9. Ausschnitt des ersten Propellers aus der Sys-
temtopologie in der ASCI-Repräsentation 

4. ANWENDUNGSEBENE

Um eine durchgängige Modellierung der Tiltrotor VTOL in 
unterschiedlichen Modellierungstiefen zu erreichen, stellt 
die Anwendungsebene ein Vorgehen zur Generierung der 
Systemtopologien zur Verfügung. Darüber hinaus werden 
weitere Funktionen zur Abstraktion von wiederkehrenden 
Parametrierungen der Systemelemente eingeführt. In der 
Anwendungsebene wird hierzu eine fluggerätespezifische 
Beschreibungsdatei genutzt, um für die verschiedenen De-
taillierungsebenen aus den Klassen der Werkzeugebene 
spezifische parametrierte Objekte zu instanziieren. Durch 
die Beschreibungsdatei können verschiedene Tiltrotor 
VTOL Konfigurationen mit unterschiedlicher Größe, Anzah-
len an Propellern oder verschiedenen Tragflächenkonfigu-
rationen beschrieben werden. Die parametrierten Objekte 
werden in einem Baumgrafen abgelegt. Der Graf entspricht 
in seiner Topologie der jeweiligen Modellierungstiefe des zu 
generierenden Tiltrotor VTOL Modells.  

4.1. Modellierungstiefen 

Durch die unterschiedlichen Anforderungen an Simulati-
onsmodelle, durch verschiedenste Syntheseaufgaben im 
mechatronischen Systementwurf, werden Modelle mit ver-
änderlicher Modellierungstiefe benötigt. In diesem Kapitel 
wird ein Überblick über die implementierten Modellie-
rungstiefen vermittelt. 

1) Einmassenmodell ohne Aktordynamik
Hierbei wird der Rumpf zusammen mit den Tragflä-
chen und den Antriebssystemen als ein Körper model-
liert. Die durch den Regler geforderten Motordrehzah-
len, Schwenkwinkel und Kappenstellungen liegen di-
rekt an. Die Auftriebskräfte der Tragflächen werden
durch segmentierte Tragflächenteilstücke berechnet.
Hierdurch wird die aerodynamische Dämpfung des
Systems bereits mitberücksichtigt. Dies ist die Model-
lierungstiefe mit dem größten Grad der Abstraktion, die
hier umgesetzt wurde.
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2) Einmassenmodell mit PT1-Dynamik für Propeller-
drehzahlen und Schwenkwinkel
Dieses Modell erweitert die vorrangegangene Model-
lierungstiefe um PT1-Dynamiken für die Propellerdreh-
zahlen und die Schwenkwinkel der Antriebssysteme.

3) Einmassenmodell mit PT1-Dynamik für Propeller-
drehzahlen und PT2-Dynamik für Schwenkwinkel
und Klappenstellungen
Dieser Abstraktionsgrad erweitert das Einmassenmo-
dell mit PT2-Dynamiken für alle unterlagerten lagege-
regelten Größen. Dies ist physikalisch durch die zwei
Integratoren in der Modellierung der Position einer
Masse begründet.

4) Mehrkörpermodell mit massebehafteten Propellern 
(Annahme: Trägheit der Propeller ist die einer aus-
gedehnten Scheibe)
In dieser Modellierungstiefe, wird bei einem System mit 
vier Propellen, ein Mehrköpermodell mit fünf Körpern
erzeugt. Die Propeller werden mit der Trägheit einer
ausgedehnten Scheibe versehen. Diese Vereinfa-
chung führt dazu, dass größere Schrittweiten zur Si-
mulation verwendet werden können. Der Grund hierfür
liegt in den schwenkbaren Propellersystemen. Bezo-
gen auf das Koordinatensystem in der Schwenkachse
des Systems gibt es keine Variation der Trägheit um
die Schwenkachse bei Rotation der Propeller. Die Dy-
namiken der Steuerklappen werden weiter durch Ver-
zögerungsglieder zweiter Ordnung modelliert.
Um in der Detaillierungsebene weiterhin die Sollwerte
für die Propellerdrehzahl und den Schwenkwinkel als
Systemeingang nutzen zu können, ist eine unterla-
gerte Regelung des Antriebsmomentes für das Servo-
motor der Schwenkmechanik und den Antriebsmotor
nötig.
Für die Schwenkmechanik wird hierzu ein kaskadierter
P-PI-Regler eingesetzt. Dieser Regler nutzt wiederum
Saturierungen für das maximale Moment und die ma-
ximale Schwenkrate. Somit sind die Schwenkaktoren
im Moment und der Geschwindigkeit begrenzt. Für die
Propellerdrehzahl wird ein PI-Regler genutzt.
Somit kann die gleiche Schnittstelle zum Fluglagereg-
ler in allen Modellierungsgraden eingesetzt werden.

5) Mehrkörpermodell mit massebehafteten Schwenk-
mechanismen und Propellern (Annahme: Trägheit
der Propeller ist die einer ausgedehnten Scheibe)
Die vorrangegangene Modellierungstiefe wird hier wei-
ter um massen- und trägheitsbehaftete Körper der
Schwenkmechaniken ergänzt.

6) Mehrkörpermodell mit massebehafteten Schwenk-
mechanismen und Propellern
In dieser Modellierungstiefe wird auf die Vereinfachung 
des Trägheitstensors der Propeller verzichtet. Zur Si-
mulation sind hier kleinere Schrittweiten nötig. Insbe-
sondere zweiblättrige Propeller stellen hier wegen der

großen Varianz zwischen 𝑰௉೔ ௉೔,௫௫ቀ஼ು೔ቁ 
 und 𝑰௉೔ ௉೔,௬௬ቀ஼ು೔ቁ 

 eine be-
sondere Herausforderung an die Bandbreite des
Schwenkwinkelreglers dar. Dieser Effekt kann bei der
mechanischen Auslegung des Schwenksystems und
der Parametrierung der Schwenkantriebe nicht ver-
nachlässigt werden. Mögliche Fehlerbilder sind hier
defekte Zahnräder in den Servomotoren, ungewollte
durch den Servoantrieb induzierte Schwingmodi oder
auch defekte mechanische Komponenten des
Schwenksystems.

7) Mehrkörpermodell mit Steifigkeiten in den Flügel-
wurzeln und massebehafteten Tragflächen,
Schwenkmechanismen und Propellern (Annahme:
Trägheit der Propeller ist die einer ausgedehnten
Scheibe)
Ziel dieser Modellierungstiefe ist es die Einflüsse der
Steifigkeiten in den Tragflächen auf die Fluglagerege-
lung zu untersuchen. Zur Modellierung werden hier
masse- und trägheitsbehaftete Körper für die Tragflä-
chen ergänzt. Diese sind wiederum durch rotatorische
Gelenke mit dem Rumpf verbunden. Die Gelenke wer-
den durch Feder-Dämpfer Momente in der Baumtopo-
logie ergänzt. Dabei ist das Gelenk um die z-Achse für
die Modellbildung aufgrund der großen Steifigkeit und
der daraus resultierenden großen Eigenfrequenz nicht
relevant für die Fluglageregelung und findet keine Be-
rücksichtigung. Es werden die Freiheitsgrade um die x-
Achse und die y-Achse berücksichtigt und durch die
Minimalkoordinaten 𝜎௪௜ und 𝜏௪௜ abgebildet.

4.2. Vorgehen der Modellbildung in der Anwen-
dungsebene 

Für die einzelnen Detailierungsgrade der Modellie-
rungstiefe wird für ein Fluggerät eine gemeinsame Parame-
terdatei genutzt. In dieser werden alle relevanten Parame-
ter des Tiltrotor VTOL‘s vorgehalten. Zur Generierung der 
detaillierungsgrad spezifischen Baumtopologie werden zu-
nächst symbolische Variablen für alle relevanten Parame-
ter und Freiheitsgrade generiert. Alle durch die Parameter-
datei bekannten Größen werden in dem Satz der symboli-
schen Variablen anschließend substituiert. So kann neben 
einem vollständig parametrierten Modell, auch ein vollstän-
dig aus symbolischen Variablen bestehendes Modell oder 
beliebige Mischformen generiert werden. Durch diese Mög-
lichkeit können mit geringem Aufwand Parameterstudien 
durchgeführt werden, aber auch Modelle mit vollständiger 
Parametrierung für die Reglersynthese erzeugt werden. 

Zur Generierung sich wiederholender Teilsysteme stellt die 
Applikationsebene Funktionen bereit, die die Erstellung und 
Parametrierung der Basisobjekte vornimmt. Dies sind zum 
Beispiel die Funktionen zur Generierung der Schwenkroto-
ren oder der Tragflächen des VTOL‘s. Es wurden jedoch 
auch einfachere Funktionen zur Erzeugung der PD-/PID-
Regler oder PTx-Dynamiken mit Saturierungen umgesetzt. 
Diese instanziieren die Objekte der Zusatz-DGL-Klasse 
entsprechend. 

Nach der Instanziierung der Objekte der Lösungselement-
klassen werden die generierten Objekte durch Funktionen 
wiederum topologisch in der Gesamtsystemtopologie ein-
geordnet.  

Im Anschluss werden einheitliche Ein- und Ausgangsbusse 
zum einfachen Austausch der Systemmodelle der verschie-
denen Detaillierungsstufen geschaffen. Neben den Bussen 
wird eine Funktion zur Zuordnung der Größen in den Ein-
gangsvektor des Systems erzeugt. Ebenso wird eine Funk-
tion zur Zuordnung der Größen des Ausgangsvektors in 
den Ausgangsbus erzeugt. Diese Busse sind für ein Flug-
gerät über die Modellierungstiefen einheitlich, um einen ein-
fachen Modellaustauch während der Reglersynthese und -
validierung zu ermöglichen. 

Die Anwendungsebene generiert für die Modelle Simulink 
Data Dictionaries. Diese beinhalten alle benötigten Para-
meter und Busdefinitionen. Es wird für die Sätze aus Para-
metern und Busdefinitionen unterschieden, ob ein Modell 
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nur aus symbolischen Gleichungen, ausschließlich ein Sim-
scapemodell oder beides eingesetzt werden soll. Somit 
sind die Data Dictinaies auf die für den Modelltyp minimale 
Größe reduziert.  

4.3. Implementierung der flexiblen Flügelele-
mente 

Dieses Kapitel beschreibt die Umsetzung von flexiblen Flü-
gelelementen durch die Anwendungsebene. Um bedarfs-
orientiert verschiedene Steifigkeiten einbringen zu können, 
sind die Steifigkeitselemente in der Beschreibungsdatei so 
umgesetzt, dass zu jedem Steifigkeitselement ein Vektor an 
Systemkomponenten angegeben werden kann, der defi-
niert welche weiteren Teilsysteme durch die Steifigkeit an-
gebunden sind. Hierrunter können wiederum auch weitere 
Steifigkeitselemente fallen. So können zum Beispiel ver-
schiedene hintereinander folgende Steifigkeiten in einem 
Flügel abgebildet werden. Im Fall eines VTOLs mit acht 
Propellern kann dies zum Beispiel eine Steifigkeit in der 
Flügelwurzel sein, eine weitere Steifigkeit nach dem ersten 
Motorträger und eine letzte Steifigkeit vor den Querrudern. 
Eine weitere Möglichkeit besteht darin, eine Steifigkeit für 
das Höhenseitwerk und Seitenleitwerk abzubilden. 

Für die Reglersynthese des Albacopters 0.1 sind die Stei-
figkeiten in den Haupttragflächen von Relevanz. Dies ist auf 
die Anbindung der Antiebssysteme über die Motorträger an 
der Haupttragfläche zurückzuführen. Diese Anbindung re-
sultiert in langen Hebelarmen zwischen den Antriebssyste-
men und den Tragflächen des VTOL’s. Je nach Reglerpa-
rametrierung und struktureller Auslegung des Systems kön-
nen hier flugdynamisch relevante Schwingungsmodi auftre-
ten. 

Um die Simulationsdauern gering zu halten, wird zunächst 
für das Modell des Albacopter 0.1 mit vier Schwenkrotoren 
nur je eine Steifigkeit mit zwei Freiheitsgraden in der Flü-
gelwurzel der linken und rechten Tragfläche vorgesehen. 
Hierdurch können die beiden auf dem Prüfstand als rele-
vant identifizierten Schwingungen simuliert werden. Bei 
dem ersten relevanten Modus handelt es sich um eine ge-
genphasige Nickschwingung des Rumpfes gegenüber der 
Motorträger. Der zweite beobachtete Modus ist eine auf 
und ab Bewegung der Motorträger gegenüber dem Rumpf. 

4.4. Nachverfolgbarkeit, Reproduzierbarkeit 
und Dokumentation 

Bei der Reglersynthese von Flugsystemen ist es von be-
sonderer Relevanz die Nachverfolgbarkeit und Reprodu-
zierbarkeit der Systemmodelle sicherzustellen. Dies wird 
durch eine Git Integration erreicht. Hierbei wird sicherge-
stellt, dass für jedes generierte Modell der Generator versi-
oniert ist, sowie der entsprechende Commit-Hash des Ge-
nerators im Generat abgelegt wird. Die verschiedenen 
Fluggeräte und Modellierungstiefen werden durch ver-
schiedene Branchbezeichnungen in Git nachgehalten. Die 
Detaillierungsebenen lassen sich so durch einen 
Branchwechsel des Modells auswählen. Das Systemmo-
dell kann über ein Submodul in das Gesamtmodell integriert 
werden. 

Die Erklärbarkeit der Modelle wird durch das Ablegen der 
Fluggerätparameter in einem JSON-Format gewährleistet. 
Änderungen in den Parametern werden durch die Git Än-
derungsverfolgung offen dem Generatsnutzer dargelegt. 

Ebenso wird dieses Vorgehen für die Einstellungen der De-
taillierungsebene verwendet. Hier wird beispielsweise ab-
gelegt, ob massenbehaftete Propeller in der Detaillierungs-
ebene genutzt werden sollen. Die ASCI-Repräsentation 
des Modells wird zur Sicherung der Erklärbarkeit ebenso 
mit im Generat abgelegt. So kann auch dem Modellnutzer 
des analytisch generierten Modells ein hoher Grad an 
Transparenz ermöglicht werden. 

5. ERGEBNISSE
Aus dem Vorgehen zur automatischen Modellgenerierung 
entsteht für den Detaillierungsgrad mit Steifigkeiten in den 
Flügeln das in BILD 11 abgedruckte Gesamtsystemmodell. 
Das Simscape-Mehrköpermodell enthält dabei die in BILD 
10 gezeigte 3D-Visualisierung der generierten Funktions-
elemente. So kann dem Nutzer ein visueller Eindruck des 
Systemverhaltens und des generierten Systems vermittelt 
werden. 

BILD 10. Visualisierung der physikalischen Repräsenta-
tion der Elemente des Albacopter® 0.1 

Durch die Linearisierung der verschiedenen 
Modellierungstiefen des analytisch generierten Modells 
kann der Einfluss der Modellierungstiefen deutlich 
gemacht werden. In BILD 12 sind die Pole und Nullstellen 
einiger Modellierungsebenen für den Start- und 
Landevorgang des Albacopter 0.1 abgedruckt. Es wird 
ersichtlich, dass mit steigender Modellierungstiefe weitere 
Pole und Nullstellen im linearisierten System 
hinzukommen. Die Starkörpermoden des Systems bleiben 
weitestgehend unverändert. 

6. ZUSAMMENFASSUNG UND AUSBLICK

In der Abhandlung wurde gezeigt, wie für die Fluggerät-
klasse der Tiltrotor VTOL mittels eines generischen Vorge-
hens Modelle unterschiedlicher Modellierungstiefen 
gene-riert werden können. Hierbei sorgt eine 
einheitliche Be-schreibungsdatei des Fluggeräts dafür, 
dass sowohl Mehr-köpermodelle nach dem Verfahren von 
Jourdain wie auch topologisch identische Simscape 
Modelle generiert werden können. Die analytischen 
Modelle bieten sich gegenüber den topologisch 
erzeugten Modellen für den Einsatz als Modell im 
Regler oder Beobachtern an. Sowohl die analyti-schen 
Modelle als auch die Simscape Modelle können bei der 
Optimierung der Reglerparameter genutzt werden [13]. 

Das Vorgehen ließe sich um weitere Lösungselemente er-
weitern. Hier bietet sich die Erweiterung um ein Batteriemo-
dell  durch  ein einfaches Thévenin-Modell an [14].  Dieses
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BILD 11. Ausschnitt des Simscape Modells 

BILD 12. 

 
  

Ausschnitt des Simscape Modells: linker Flügel mit elastischer Flügelwurzel, einem massebehafteten Pro-
peller und einer massebehafteten Schwenkmechanik und zwei Tragflächenelementen 

Linearisierung des Albacopter® 0.1 während des Startvorgangs 
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könnte durch Vererbung aus der Zusatzdynamikklasse er-
zeugt werden. Ähnliches kann für Motormodelle erweitert 
werden. Hier sollte jedoch der Detaillierungsgrad entspre-
chend dem Untersuchungsziel passend gewählt werden. 

Eine Erweiterung der Detaillierungstiefe der Propellermo-
delle um ein Blade-Element-Momentum-Theory Modell [15] 
wurde im Zuge dieser Arbeit in Betracht gezogen, da insbe-
sondere eine seitliche Anströmung der Propellerebene zu 
großen Kräften führen kann. Eine Umsetzung erfolgte je-
doch bisher nur in Einzelmodellen und noch nicht im Ge-
samtmodellverbund. Sie wurde bisher wegen der dadurch 
zu erwartenden Erhöhung der Simulationsdauer und der 
benötigten Reduktion der Simulationsschrittweite nicht um-
gesetzt. 

Auf einem 3-Freiheitsgradeprüfstand (BILD 1) wurden be-
reits Versuche durchgeführt, die eine zukünftige Modellvali-
dierung und Nachparametrierung ermöglichen. Für das 
System mit vier Propellern konnten aufgrund der Größe 
auch Versuche zur Validierung im Windkanal vorgenom-
men werden [16]. Zur schrittweisen Inbetriebnahme des 
Systems wurde der Albacopter 0.5 zunächst durch ein 
Kranseil gesichert geflogen (BILD 13). Der Erstflug des 
Systems konnte bereits erfolgreich vorgenommen werden 
(BILD 14). 

BILD 13. Albacopter® 0.5 im Flug am Kran 

BILD 14. Albacopter® 0.5 im Freiflug 
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