
MULTI-LAYER ADVERSARIAL DETECTION FOR SHIP SEGMENTATION
ON NVIDIA JETSON ORIN

Badr-Eddine Bouhlal∗, Clemens-Alexander Brust∗
∗ Institute of Data Science, German Aerospace Center (DLR), Jena, Germany

Abstract
Autonomous systems, including Unmanned Aircraft Systems (UAS), rely on deep learning models for critical
tasks such as object detection and segmentation. However, they are targeted by different threats, among them
adversarial attacks, where small perturbations in input images can deceive the model and lead it to mispredict.
Adversarial images (AEs) remain a challenge, as they are often similar to the expected inputs, making them
difficult to distinguish for human observers as well as some models. This study defines a method for detecting
AEs in an autonomous system by leveraging multi-level system monitoring, including image-based, model-
based, and hardware-based metrics. Our goal is to identify key indicators of adversarial image manipulation
while minimizing experimental bias through controlled evaluation conditions. We generate multiple adversarial
samples using both white-box and black-box attack strategies. Experiments are conducted using the Airbus Ship
Detection dataset, which comprises high-resolution satellite images suitable for aviation-related applications such
as aerial coastal monitoring and maritime surveillance. A ship segmentation model is deployed on an NVIDIA
Jetson Orin AGX, and metrics are collected during inference under controlled conditions. Our contribution
includes, first, identifying a relevant set of features that effectively distinguish AEs from genuine inputs. Second,
we investigate if system profiling - by including model and hardware monitoring - can provide additional robust
signals for adversarial detection beyond traditional image-based analysis. We propose a real-time adversarial
detection pipeline based on supervised classification over Image, Model-profiling, and hardware metrics. The
results reveal that the detection relies mainly on image features while profiling features provide complementary
cues for some attacks and hardware (Tegrastats) metrics are noisy and largely uninformative.

Keywords
Adversarial Examples; Image Segmentation; NVIDIA Jetson Orin AGX; Tegrastats Utility

1. INTRODUCTION

Adversarial attacks represent a high safety challenge
for deep neural networks, especially when deployed
in real safety-critical and strategic use cases, such as
in unmanned vehicles operating in edge computing
environments with limited resources in terms of
memory and computation power. Examples of such
platforms include AI accelerators like the NVIDIA
Jetson AGX. In these environments, the implemen-
tation of traditional defenses is more difficult due to
resource restrictions. Different methods for defending
against Adversarial Examples (AEs) exist, rang-
ing from robustness-enhancing approaches (defense
mechanisms) [1, 2], where techniques like adversarial
training are employed, to detection mechanisms [3, 4],
where detectors are implemented at the input of
the inference pipeline to monitor incoming data and
catch the unusual image input before they reach the
inference step.
In this study, we examine a detection-based approach
that deals with an un-targeted attack scenario, where
the adversary’s objective is not to force the model
toward a specific mis-classification but rather to de-

grade prediction accuracy by inducing misleading out-
puts. We employ two categories of multiple adver-
sarial attack methods in this work. Black-box meth-
ods [5] where the adversary does not have knowledge of
the internal characteristics of the victim Deep Learn-
ing model but can access its inputs and outputs, and
white-box methods [1] where the adversary has par-
tial or complete knowledge of the victim deep learning
model [6].
In this paper, we explore a metric-driven approach for
detecting adversarial examples during inference. Our
main contributions are as follows:
• We deployed an image segmentation model on the

NVIDIA Jetson AGX platform and used it as the
basis for evaluating adversarial robustness in a real-
istic edge computing environment.

• We analyzed different types of features separately
and combined, including image-based indicators,
hardware-level behaviors, and model profiling met-
rics, to understand their effectiveness in detecting
adversarial manipulations.

• We conduct experiments under both white-box and
black-box untargeted attacks to evaluate how differ-

1

Deutscher Luft- und Raumfahrtkongress 2025
DocumentID: 650199

doi: 10.25967/650199©2026

https://doi.org/10.25967/650199

ent adversarial strategies impact the detection po-
tential of each feature type.

2. RELATED WORK

Several studies have explored the use of low-level sys-
tem and hardware signals to identify adversarial input.
[7] proposes detecting AEs by monitoring micro-

architectural activities during inference. It focuses on
detecting altered neural activation patterns caused by
adversarial perturbations that may lead to different
behavior in cache misses or branch instructions that
do not occur in normal inputs. For example, the
study shows that cache-miss monitoring yielded up to
99.25% detection accuracy.
[8] examines the usability of the CPU hardware, more
specifically the Performance Monitoring Unit (PMU)
to detect AEs. For the study, they used the FGSM
method with perturbation ϵ = 0.01. The results show
that no robust pattern was found that could distin-
guish between normal and AEs. Some counters varied
by 1%, but these variations were inconsistent and sta-
tistically not relevant for the detection of AEs.
[9] used NVIDIA-smi which provides monitoring and

management capabilities for each of NVIDIA’s Tesla,
Quadro, GRID and GeForce devices [10] to log GPU
utilization, power, memory, and other NVIDIA-smi
hardware metrics, the authors evaluated these metrics
on a classification task using 14 different AEs. The re-
sults show that the detection accuracy of using GPU
metrics might reach 80-90% for attacks like DeepFool
and Simba on the MINT dataset. However, for other
datasets like CIFAR and STL, the accuracy drops (65-
70%).
Other works focus on detecting adversarial perturba-
tions by analyzing image representations directly.
[11] used images-based extracted features. They

employed two types of spectral representations of the
Fourier transform as detection artifacts, detection
based on the magnitude of Fourier coefficients, and
detection based on the phase information of Fourier
coefficients. The results showed that these Fourier-
based features effectively work on gradient-based
attacks such as Fast Gradient Sign Method (FSGM),
Basic Iterative Method (BIM), and Projected Gradi-
ent Descent (PGD) with a detection score up to 90%,
on the other hand, their method was less successful for
optimization-based attacks like Deepfool and Carlini
and Wagner (C&W).
[12] demonstrates that, the difference between com-

pression and decompression of normal images and
AEs reveals discrepancies because adversarial noise is
mostly concentrated in high-frequency details, which
JPEG compression tends to remove, while the main
visual content of natural images remains largely unaf-
fected. JPEG preprocessing reduces misclassification
success (attack success rate) for FGSM and DeepFool
on CIFAR-10 and GTSRB datasets.
Some approaches aim to detect AEs by profiling the
internal behavior of the model parameters during in-
ference, including layer-level statistics.

[13] uses an AI Performance Counter (APC) to
monitor metrics such as layer sparsity and zero
counts, dense layer activity (avg/min/max activa-
tion), FLOPs, MACs, entropy, throughput, etc., and
analyze these APC metrics in real time to detect
anomalies. The metrics collected during DeepFool
adversarial attacks show high accuracy (up to 98%)
in distinguishing adversarial inputs.

The results of the reviewed AE detection methods
revealed an inconsistency of the results, especially in
regard to hardware metrics showing inconsistency. [7]
presented excellent detection results using cache
misses. On the other hand, [9] demonstrates that
GPU-based metrics could work only depending on the
use case, model, data, AEs, and the hardware studied,
since both studies used different types of hardware
and which are different from the hardware we are
using in this study. In terms of image features, while
promising results have been achieved, the effectiveness
does not extend to all AEs. For example, the C&W
still poses issues due to its complexity and the slight
perturbation it causes, as demonstrated by [11]. In
our study, we evaluated the detection of AEs using all
three categories of characteristics. Hardware metrics
(on Jetson Orin AGX via tegrastats), image-based
features, and model-level (segmentation) profiling, us-
ing a specific hardware architecture designed specially
to run Deep Learning models on unnamed machines.

3. METHODOLOGY

The methodology consists of two main stages: offline
and online, as shown in Figure 1.
The Offline stage involves deploying a ship segmen-
tation model on a Jetson Orin AGX platform and then
generate AEs using high resolution satellite images, an
example of these images is shown in Figure 2. We per-
form black-box and white-box attacks on the normal
images and the segmentation model to generate AEs.
We perform tuning of multiple attacks parameters to
determine the appropriate degree of perturbation. The
latter is determined on the basis of the level of mis-
prediction of the model and human perception. The
perturbed image (the resultant AEs) should not be
altered to the point where humans can recognize the
differences between normal images and AEs.
The model will then be deployed, and we collect met-
rics to determine AEs artifact signals. The metrics
include image-based features, hardware execution ar-
tifacts, and model profiling metrics.
First, we assess each feature separately to understand
how it performs in detecting AEs. After that, we com-
bine them to evaluate whether the combination im-
proves performance. Our goal is not only to define the
set of best features, but also to understand how these
different feature types contribute to detecting AEs in-
puts.
Online stages consist of deploying a classification
model that uses the combination of different metrics
to detect AE images.

2

Deutscher Luft- und Raumfahrtkongress 2025

©2026

FIG 1. Workflow of the proposed methodology for adversarial example detection, from satellite images and AE generation
to model deployment, metric collection, analysis, and final classification.

3.1. Ship Segmentation Model

For this work, we deployed a model of ship segmen-
tation trained with the Airbus ship detection dataset
[14], which contains satellite images for evaluating sys-
tems on the detection of ships in maritime environ-
ments. The model was implemented using Pytorch 1.
The model is relatively small, we did not need ad-
vanced optimization methods or tools such as Ten-
sorRT (an ecosystem of APIs for high-performance
deep learning inference) [15], we instead used the Py-
toch native optimizations and CUDA support to en-
sure efficient processing on the platform.
The model employs a DeepLabV3+ architecture [16].
The input images are RGB with three channels and
the model outputs is a single-channel prediction map
representing the probability of ship presence at each
pixel.
Before the inference, input images are normalized us-
ing an encoder with specific mean and deviation val-
ues, this will ensure the consistency with the encoder
pretraining. To handle class imbalance the Dice Loss
with logits as a training objective is used, due to the
fact that for the segmentation of the ship detection
use case the background pixels vastly outnumber the
foreground ones (ships).
During the inference, a fixed threshold of 0.5 to
the Sigmoid outputs is applied to obtain binary
segmentation masks. The model is evaluated using
Intersection-over-Union (IoU) following the COCO
method [17], computed both on a per-image basis and
aggregated over the dataset. The model was trained
offline using the Adam optimizer with a learning rate
of 0.001. The model is trained with 220 epochs and
achieves a validation IoU of 0.90

3.2. Adversarial Image Generation

To assess the robustness of the model of ship segmen-
tation, we generate AEs using a combination of black-
box and white-box attack methods as shown in Ta-
ble 1. These attacks apply various perturbations to in-

1PyTorch: https://pytorch.org

FIG 2. Sample satellite image from the airbus ship detec-
tion Dataset [14], showing a ship at sea.

put images to simulate adversarial conditions. Under
different attack scenarios, black-box attacks do not re-
quire any information about the target model, whereas
white-box attacks rely on access to internal model in-
formation. These methods include both noise-based
perturbations (black-box) and gradient-based pertur-
bations (white-box).
We also tuned the perturbation magnitude (e.g. ep-
silon in FGSM or the amount of noise in the salt-and-
pepper attack) with the model performance, assessing
how different levels of perturbation impacted segmen-
tation accuracy, the list of the methods and parame-
ters is shown in Table 1 and an example of ship seg-
mentation using a normal vs. an AE image is shown
in Figure 3.

3.2.1. Black-Box Attacks

We used black-box attacks to simulate the real use case
where the attacker does not have access or knowledge
of the model internal parameters. Multiple methods
were implemented:
• Random perturbation [18]: Adds Gaussian noise to

the entire image, the noise grad can be adjusted by

3

Deutscher Luft- und Raumfahrtkongress 2025

©2026

https://pytorch.org

Method Parameters Type
FGSM [2] ϵ = 0.02 White-box
PGD [1] ϵ = 0.1, α = 0.05,

steps = 5
White-box

Random Perturbation [18] (1) mean = 0, std =
0.05
(2) mean = 0, std =
0.1

Black-box

Gaussian Blur [18] (1) kernel = 7×7, σ =
5
(2) kernel = 11 × 11,
σ = 10

Black-box

Salt & Pepper [18] (1) prob = 0.01,
salt/pepper = 0.1
(2) prob = 0.09,
salt/pepper = 0.2

Black-box

Negative Brightness [19] (1) factor = 0.5
(2) factor = 1.0

Black-box

TAB 1. Adversarial and perturbation methods with corre-
sponding parameters and type.

(a) Normal image: the ship is correctly segmented. Predicted
ship pixels are shown in red while the absence of red seg-
mentation indicates no detection

(b) Adversarial image generated using FGSM (ϵ = 0.02): the
ship is not segmented properly. Predicted ship pixels are
shown in red while the absence of red segmentation indicates
no detection

FIG 3. Comparison between normal and AEs for ship seg-
mentation. The normal image is segmented accu-
rately, whereas the adversarial image crafted using
FGSM with ϵ = 0.02 causes segmentation failure.
Predicted ship pixels are shown in red while the ab-
sence of red segmentation indicates no detection.

a mean which enables to define the average noise to
be added and standard deviation which controls the
intensity of the noise, and these parameters enable
us to simulate different degrees of distortion of the
image.

• Negative [19]: Inverts the pixels of the images. We
used this method to test the ability of the model
to recognize ships under extreme color changes, the
resulting image is the flipped image of the original
(using a factor).

• Salt-and-Pepper Noise [18]: Adds randomly sets of
percentage of pixels in the image to either maximum

(white) or minimum (black) values. The proportion
of noise is also controlled by a probability parameter.
This attack enables us to assess the model under
extreme pixel-level distortions.

• Gaussian blurring [18]: Apply a smoothing filter to
the image, and this modification degrades the qual-
ity of high-frequency details, which can simulate, for
example, scenarios where images are blurred due to
environmental factors such as low resolution.

3.2.2. White-Box Attacks

The white-box attack uses the model’s internal infor-
mation to create perturbations designed specifically to
exploit the weakness of the targeted model. we im-
plemented the following gradient-based methods using
the segmentation model:
• Fast Gradient Sign Method (FGSM): [2] This

method perturbs the input image by applying a
small step in the direction of the loss gradient with
respect to the input.

• Projected Gradient Descent (PGD) [1]: which is an
iterative attack that modify the image iteratively in
multiple small perturbations steps while keeping the
modifications small. Unlike FGSM which applies the
modifications in one single step.

3.3. Inference Procedure

To evaluate the ship segmentation model and the
NVIDIA Jetson response to normal and AEs, we
processed the images corresponding to each method
sequentially, but we observed the effect of GPU
warm-up and memory saturation on the hardware
metrics. In addition to this effect, we noticed that
long sequential runs of the inferences caused cache
growth in both the OS cache and the CUDA caching
allocator. This led to memory pressure and, when the
dataset was large, to engine stalls, so we implemented
a round-robin processing method [20] as shown in
Figure 4.
Each original image and its corresponding adversarial
variants were processed iteratively, in order to miti-
gate this bias. At each iteration, the first unprocessed
image from each adversarial method (including the
normal image) is processed. We also performed per-
inference cleanup, where we deleted intermediate ten-
sors and arrays, synchronized the device, and cleared
the CUDA allocators.
In this way, the effects of increasing GPU temperature,
memory fragmentation will be distributed across all
image types, since the experiment using a large dataset
may last for multiple days and the caching effect will
be avoided.

3.4. Segmentation Monitoring And Features Genera-
tion

3.4.1. Image Features

Our multi-layered adversarial detection method re-
quires image features that show systematic differences

4

Deutscher Luft- und Raumfahrtkongress 2025

©2026

FIG 4. Round-Robin Image Inference

between normal and AEs. For this reason, we extract
a set of features from each input image before infer-
ence. This ensures applicability to all types of images:
normal, as well as black-box and white-box AEs. The
features describe global intensity statistics, structural
characteristics, frequency information, compression
sensitivity, and local texture:
• Metadata. We extract basic image properties in-

cluding width, height, area, file size, and number of
channels, which describe the geometry and storage
characteristics of the image.

• Intensity statistics. We compute the global
mean and variance of pixel values, as well as per-
channel mean and variance, summarizing brightness
and contrast distributions.

• Entropy. Entropy is calculated from grayscale his-
tograms to quantify the information content of pixel
intensity distributions [21].

• Structural features. We extract the number of
keypoints detected by the ORB (Oriented FAST and
Rotated BRIEF) algorithm [22] and the density of
edges obtained using the Canny detector [23], cap-
turing local geometric structures.

• Gradient statistics. The mean, variance, and
maximum gradient magnitudes are obtained from
Sobel operators [24], summarizing local intensity
transitions.

• Frequency features. We compute the mean, vari-
ance, and high-frequency energy of the Fourier mag-
nitude spectrum [11] to describe spectral character-
istics of the images.

• Compression sensitivity. JPEG recompres-
sion error [25] is measured as the mean squared
difference between the original image and its
JPEG-compressed version.

• Texture descriptors. Local Binary Patterns
(LBP) are extracted with parameters P = 8, R = 1,
and the normalized histogram is used to capture
local texture patterns.

3.4.2. Hardware Features

To monitor the hardware metrics during the inference
on the engine we used the Tegrastats utility, which is

already integrated in the NVIDIA Jetson Orin. For
each image input, we start the tegrastats in the back-
ground immediately before the inference and kill it
immediately afterward, ensuring per-image measure-
ment. Tegrastats enables us to capture device-level
resource utilization, thermal behavior and power con-
sumption. the device metrics are collected for a tem-
poral resolution of 10 ms intervals and written into a
log-file tagged with the method (normal or adversarial
with the exact name the adversarial method) and the
image ID to ensure traceability. Once the inference
of the single image is complete, the system terminates
the tegrastats process, waits a few seconds until the
log file is finalized and non-empty, then parses its con-
tent to extract the metrics. After the parsing the log
is deleted to minimize storage overhead because the
limited memory capacity of the device does not allow
long-term storage of intermediate logs. An example of
a log entry generated by Tegrastats is shown in Fig-
ure 5.
Each line of the Tegrastats log file provides a snap-
shot of the system utilization. We extract four key
groups of metrics from each sample:
(a) Memory metrics: Include RAM_Used and

RAM_Total (in MB), the size of the largest
free block (RAM_LFB), and swap-related statistics
(SWAP_Used, SWAP_Total, SWAP_Cached).

(b) CPU and GPU utilization: Captured via the
summed CPU core usage (CPU) and the Jetson
GPU load percentage (GR3D_FREQ).

(c) Thermal metrics: Obtained from multiple on-
board sensors, including CPU_Temperature,
GPU_Temperature, Tboard_Temperature,
TJ_Temperature, and SoC regions (SOC0,
SOC1, SOC2).

(d) Power consumption metrics: Measure both
instantaneous and average power draw for
key voltage rails: VDD_GPU_SOC, VDD_CPU_CV,
VIN_SYS_5V0, and VDDQ_VDD2_1V8AO.

Once the raw samples are extracted from the
tegrastats log files, we compute both aggregate
statistics and engineered hardware features for each
image. The aggregate metrics consist of the mean
and standard deviation of all numeric measurements,
providing a compact summary of the device state
during inference. To capture dynamic behavior, we
derive additional engineered features such as the
difference in GPU load (∆GPU_Load), defined as
the change in GR3D_FREQ between the start and
end of inference, and the difference in GPU power
(∆GPU_Power), computed as the variation in instan-
taneous VDD_GPU_SOC power draw across the same
window.

3.4.3. Model Profiling Features

In addition to image and hardware metrics, we also
capture the model profiling internal behavior during
inference of both normal and AEs. by analyzing these
metrics, we can demonstrate that deviations in model
behavior might serve as signal of adversarial pertur-

5

Deutscher Luft- und Raumfahrtkongress 2025

©2026

RAM 3242/15928MB (lfb 403x4MB)
SWAP 0/4095MB (cached 0MB)
CPU [4%@1190, 6%@1190, 3%@1190, 2%@1190,

1%@1190, 1%@1190]↪→

GR3D_FREQ 62%
cpu@59C tboard@35C soc2@52C tdiode@50C

soc0@53C gpu@55C tj@57C soc1@52C↪→

VDD_GPU_SOC 1430mW/1200mW
VDD_CPU_CV 980mW/820mW
VIN_SYS_5V0 3200mW/2900mW
VDDQ_VDD2_1V8AO 90mW/80mW

FIG 5. Example output from NVIDIA Jetson’s
tegrastats utility showing real-time monitoring
of memory usage, CPU/GPU load, temperatures,
and power consumption during adversarial infer-
ence.

bations. From each inference, the model’s probability
maps are used to derive descriptive statistics for every
output channel:
• Mean probability: Average activation across the spa-

tial map.
• Maximum probability: Peak activation within the

map.
• Standard deviation of probability: Variability of ac-

tivations.
In addition, we use PyTorch Profiler to obtain runtime
profiling metrics:
• Operator-level CPU time (ms).
• Operator-level CUDA time (ms), when GPU is avail-

able.
• Total CPU time across all operations.
• Total CUDA time across all GPU kernels.

4. EXPERIMENTAL SETUP

4.1. Hardware and Experiment Tools

All experiments were performed on the NVIDIA
Jetson AGX Orin Developer Kit, a high-performance
edge computing platform designed for real-time AI
workloads. The board features a 12-core ARM
Cortex-A78AE CPU, an NVIDIA Ampere GPU with
2048 CUDA cores and 64 Tensor Cores, and 64GB
of LPDDR5 memory. Storage is provided via 64
GB eMMC 5.1, which can be expanded with NVMe
drives. The platform delivers up to 275 TOPS of AI
performance in INT8 precision and supports config-
urable power modes at 15W, 30W, and 50W, allowing
flexible trade-offs between energy consumption and
performance [26]. The system ran Ubuntu 22.04 with
NVIDIA JetPack 6, and a Docker container was used
to provide the additional libraries required for the
experiments2.
An external microSD card was added to store initial
datasets, results, and generated adversarial examples,

2https://github.com/dusty-nv/jetson-containers?tab=read
me-ov-file

FIG 6. IoU of the ship segmentation model on datasets of
10,000 images each, including AEs generated with
predefined perturbation parameters under white-
box and black-box attacks. The baseline with nor-
mal images is shown for comparison to illustrate
performance degradation under adversarial condi-
tions.

as the onboard storage was insufficient for large image
data. In our setup, we applied FP16 optimization,
but observed a performance loss with the converted
model. Therefore, we used the native PyTorch version
of the model to maintain segmentation performance.

4.2. Evaluation Metrics

We evaluate the classification detection performance
using the standard confusion-matrix terms: true pos-
itives (TP), false positives (FP), true negatives (TN),
and false negatives (FN). From these, we report F1,
accuracy, precision, recall, and ROC-AUC [27,28].

5. RESULTS AND ANALYSIS

5.1. Impact of Adversarial Attacks on Model Perfor-
mance

In order to analyse the metrics that lead to the de-
tection of AEs, we first assess the robustness of the
segmentation model against these methods as shown
in Figure 6. We created 10,000 images for each adver-
sarial method and evaluated the performance of the
model using them against the normal, uncrafted im-
ages. Each attack was carefully tuned to maximize the
model misprediction while maintaining high visual fi-
delity, ensuring that the AEs remain difficult to dis-
tinguish from clean ones for human observers.
We measured the model’s performance using IoU
across all methods. We noticed that clean images
have consistently high IoU values, which confirm
that the model performs very well under normal
conditions. On the other hand, the IoU drops with a
severity depending on the type of attack for the AEs.

5.2. Results Analysis by Feature Type

In this section, we analyze the classification perfor-
mance using each feature type. The goal is to assess,

6

Deutscher Luft- und Raumfahrtkongress 2025

©2026

https://github.com/dusty-nv/jetson-containers?tab=readme-ov-file
https://github.com/dusty-nv/jetson-containers?tab=readme-ov-file

how well the model distinguishes between clean (base-
line) and adversarially perturbed images using differ-
ent types of features: image-based, hardware-based,
and model profiling-based.
For each classification task we have a balanced 20,000
images, 10,000 perturbed images we generated for each
method, and 10,000 clean baseline images.
The dataset is split into 70% for training and 30%
for testing. We perform this analysis independently
for each perturbation method to understand how each
feature type contributes to detecting different types of
adversarial attacks and distortions.

5.2.1. Image-based Features

For the image-based features we noticed that the
classification model achieves perfect separation on
this dataset across all adversarial methods. The ROC
curves consistently yield an AUC of 1.0, and this
includes both white-box and black-box methods as
shown in Figure 8.
To assess the discriminative influence of the different
features of the image, we performed two distinct an-
alyzes, their relative importance and their ability to
differentiate the adversary method from the baseline
images, as shown in Figure 7 and in Figure 10.
We noticed that across all methods the image-based
features emerged as the most informative for the de-
tection of the adversarial perturbation.
FGSM, PGD, Gaussian blur, random perturbations,
and salt-and-pepper noise produce shifts in feature
space that are clearly captured by image-based met-
rics. Features such as Local Binary Patterns (LBP)
and frequency-domain statistics are particularly sen-
sitive to changes in texture, smoothness, and high-
frequency content.
However, methods with low-pixel-level perturbation,
such as low-probability salt-and-pepper noise or "neg-
ative factor" transformations, often leave image fea-
tures relatively intact, and detection relies more on
global intensity/channel statistics as shown in Table 2.

Feature Perturbation Methods
freq_mean Gaussian Blur, PGD, FGSM, Salt-and-

Pepper
freq_std PGD, FGSM, , Salt-and-Pepper
lbp_0 Blur, PGD, FGSM, Salt-and-Pepper
high_freq_energy Gaussian Blur
jpeg_error FGSM
channel_means_1 Negative
channel_means_2 Negative
channel_means_3 Negative

TAB 2. Feature–perturbation mapping: for each feature,
the perturbation methods under which it is most
informative.

In summary, the feature-importance analysis across
perturbations reveals two major patterns:
• First Pattern: For the Perturbation methods like

Gaussian blur (= 5, 10), PGD (= 0.1, = 0.05),
FGSM (= 0.02), random noise (std = 0.05, 0.1) and

salt-and-pepper noise (prob = 0.01, 0.09). We can
find that the most discriminative features are :
Frequency features: freq_mean, freq_std, and
high_freq_energy, derived from the Fourier magni-
tude spectrum of the image. These features indicate
changes in the spectral structure of the image.
JPEG re-compression features: capture com-
pression artifacts that differ between adversarial
(AE) and non-perturbed images. This feature is
especially informative for the FGSM attack.
These results show that pixel-level changes
affect spectral characteristics and local tex-
ture; accordingly, Frequency features and
Texture descriptors dominate importance, with
Compression sensitivity particularly relevant
for FGSM.

• Second Pattern: In case of the Negative attack
with two different parameters (factor = 0.5,
1.0), the intensity statistics were deterministic,
per-channel mean intensities (channel_means_1,
channel_means_2, channel_means_3) enable us to
detect these kind of attacks . Thus Intensity statis-
tics dominate, while texture/frequency features are
less affected.

FIG 7. Scatter plot of the two most discriminative fea-
tures for PGD attacks. Baseline images are shown
in blue, AEs in orange. The clusters demonstrate
near-perfect separation, highlighting the effective-
ness of image-derived features in capturing adver-
sarial perturbations.

5.2.2. Hardware-based Features

The performance of hardware metrics alone does not
exceed near 0.5 AUC, for example, in the FGSM and
PGD cases as shown in Figure 8, and this trend per-
sists across all types of AEs, including white-box and
black-box, which indicates random guessing as shown
in Table 3. These results show that the collected hard-
ware metrics (CPU/GPU consumption, power draw
(W), temperature, etc.) alone do not capture artifacts
that correlate with the existence of perturbed inputs.
We can conclude that system resource usage gathered
using the Tegrastats tools does not capture significant
hardware indicators, since metrics like CPU%, GPU%,
and memory remain nearly similar between normal

7

Deutscher Luft- und Raumfahrtkongress 2025

©2026

Method Source tp fp tn fn Acc. Prec. Rec. F1 ROC-AUC

FGSM (ϵ = 0.02) hardware 1430 1458 1542 1570 0.495 0.495 0.477 0.486 0.493

FGSM (ϵ = 0.02) images 2994 14 2986 6 0.997 0.995 0.998 0.997 1.000

FGSM (ϵ = 0.02) profiling 1733 724 2276 1267 0.668 0.705 0.578 0.635 0.710

Gaussian blur (11 × 11, σ = 10) hardware 1436 1530 1470 1564 0.484 0.484 0.479 0.481 0.484

Gaussian blur (11 × 11, σ = 10) images 3000 3 2997 0 1.000 0.999 1.000 1.000 1.000

Gaussian blur (11 × 11, σ = 10) profiling 1788 1468 1532 1212 0.553 0.549 0.596 0.572 0.568

Gaussian blur (7 × 7, σ = 5) hardware 1494 1448 1552 1506 0.508 0.508 0.498 0.503 0.500

Gaussian blur (7 × 7, σ = 5) images 2996 3 2997 4 0.999 0.999 0.999 0.999 1.000

Gaussian blur (7 × 7, σ = 5) profiling 1606 1521 1479 1394 0.514 0.514 0.535 0.524 0.530

Negative (factor=0.5) hardware 1420 1481 1519 1580 0.490 0.489 0.473 0.481 0.487

Negative (factor=0.5) images 2997 13 2987 3 0.997 0.996 0.999 0.997 1.000

Negative (factor=0.5) profiling 1500 1424 1576 1500 0.513 0.513 0.500 0.506 0.521

Negative (factor=1.0) hardware 1507 1520 1480 1493 0.498 0.498 0.502 0.500 0.491

Negative (factor=1.0) images 2973 19 2981 27 0.992 0.994 0.991 0.992 1.000

Negative (factor=1.0) profiling 1464 1353 1647 1536 0.518 0.520 0.488 0.503 0.528

PGD (ϵ = 0.1, α = 0.05, steps=5) hardware 1422 1447 1553 1578 0.496 0.496 0.474 0.485 0.489

PGD (ϵ = 0.1, α = 0.05, steps=5) images 3000 7 2993 0 0.999 0.998 1.000 0.999 1.000

PGD (ϵ = 0.1, α = 0.05, steps=5) profiling 2817 750 2250 183 0.844 0.790 0.939 0.858 0.889

Random perturbation (µ = 0, σ = 0.05) hardware 1461 1460 1540 1539 0.500 0.500 0.487 0.493 0.507

Random perturbation (µ = 0, σ = 0.05) images 2999 6 2994 1 0.999 0.998 1.000 0.999 1.000

Random perturbation (µ = 0, σ = 0.05) profiling 1541 1408 1592 1459 0.522 0.523 0.514 0.518 0.530

Random perturbation (µ = 0, σ = 0.1) hardware 1447 1458 1542 1553 0.498 0.498 0.482 0.490 0.492

Random perturbation (µ = 0, σ = 0.1) images 3000 1 2999 0 1.000 1.000 1.000 1.000 1.000

Random perturbation (µ = 0, σ = 0.1) profiling 1670 1038 1962 1330 0.605 0.617 0.557 0.585 0.654

Salt–pepper (p = 0.01, s:p = 0.1) hardware 1434 1468 1532 1566 0.494 0.494 0.478 0.486 0.490

Salt–pepper (p = 0.01, s:p = 0.1) images 2994 9 2991 6 0.998 0.997 0.998 0.998 1.000

Salt–pepper (p = 0.01, s:p = 0.1) profiling 1404 1080 1920 1596 0.554 0.565 0.468 0.512 0.587

Salt–pepper (p = 0.09, s:p = 0.2) hardware 1433 1438 1562 1567 0.499 0.499 0.478 0.488 0.501

Salt–pepper (p = 0.09, s:p = 0.2) images 3000 0 3000 0 1.000 1.000 1.000 1.000 1.000

Salt–pepper (p = 0.09, s:p = 0.2) profiling 2245 263 2737 755 0.830 0.895 0.748 0.815 0.891

TAB 3. Classification metrics for baseline–vs–attack detection across three feature sources (images, hardware, profiling).
For each method we use a balanced set of 10000 adversarial and 10000 normal images. The Classifier is trained
with a 70/30 split (14000 train / 6000 test), and metrics are reported on the test set. The green highlighted
rows show the best indicator features type per method.

and adversarial examples. We hypothesize that this
is primarily due to the following reasons:
(i) The measurement level: the Tegrastats tool gen-
erates hardware statistics for the entire Jetson Orin
system, which runs a full Linux environment, and not
at a process level for only running the segmentation in-
ference. This means that all processes running on the
Linux OS are included; for example, kernel tasks and
system daemons in the background also contribute to
the measurement. As a result, the aggregated hard-
ware metrics incorporate multiple sources of activity
rather than being isolated to the ship segmentation
model inference.
(ii) Weak AE signal: AE perturbations include
only minimal and subtle changes to the images
and, as a consequence, to the computation graph
of the model. These perturbations may cause
very marginal variations at the hardware level
(CPU/GPU/memory/power), which can be easily
masked by natural fluctuations caused by the back-
ground processes of the OS. In other words, the AE
signal at the hardware level is weaker than the noise
of the system-wide hardware utilization.

5.2.3. Segmentation-based Features

Segmentation model features show moderate to strong
discriminative performance depending on the adver-
sarial method and the parameter.

We noticed as an example for methods like PGD,
FGSM the model profiling-based classifier achieves
AUCs of 0.889 and 0.710 as shown in Figure 8.
For the Salt-and-Pepper method with parameters
(probability = 0.09, salt vs. pepper ratio = 0.2),
the classifier achieves an AUC of 0.891, but for the
same method with parameters (probability = 0.01,
salt vs. pepper ratio = 0.1), it achieves only 0.587
AUC as shown in Figure 9. This indicates that input
perturbations affect the model runtime behavior or
execution patterns.
The discriminative profiling features allowing the best
results of these methods (PGD, FGSM, and Salt-and-
Pepper method with parameters (probability = 0.09,
salt vs. pepper ratio = 0.2)) correspond to the statis-
tics derived from the segmentation model probability
map as shown in Figure 10. The features extracted
using the PyTorch profiling, which correspond to the
layer operation CPU/GPU consumption and execu-
tion time, were less informative.

6. CONCLUSION AND FUTURE WORK

Our study demonstrates that AEs pose a real risk to
segmentation models, even when these models achieve
strong baseline performance on clean satellite ship im-
ages. Our experiments confirmed that small pertur-
bations crafted with black-box and white-box attacks
degrade the segmentation performance, with a marked

8

Deutscher Luft- und Raumfahrtkongress 2025

©2026

(a) ROC curve for detecting FGSM adversarial ex-
amples (= 0.02) using image-based, model
profiling-based, and hardware-based features.

(b) ROC curve for PGD adversarial examples (=
0.1, = 0.05, steps = 5) using image-based, ,
model profiling-based, and hardware-based fea-
tures.

FIG 8. ROC curves comparing the detection performance
of image-based, hardware-based, and profiling fea-
tures on adversarial examples generated by (a)
FGSM (= 0.02) and (b) PGD (= 0.1, = 0.05,
steps = 5). The curves demonstrate the effective-
ness of the three feature types in separating normal
and AEs.

IoU reduction depending on the attack and the pertur-
bation degree.
Concerning AEs detection, our results highlight the
following findings: (i) The image-based features
are the most reliable indicators of AEs. (ii) model
profiling-based features offer complementary signals
for some attacks. (iii) Using the Tegrastats tool for
hardware metrics provides very little discriminative
information about AEs.
The Tegrastats output might be noisy and variable be-
cause of background processes, since it is especially de-
signed to capture running metrics of the whole Jetson
Orin AGX, not specifically a single running process.
This might result in the fact that the noise masks any
weak signals from the adversarial perturbations.
Based on this hypothesis, future work could leverage
more fine-grained tools that isolate hardware metrics

(a) ROC curve for Salt-and-Pepper noise (proba-
bility = 0.09, salt vs. pepper ratio = 0.2) with
AUC = 0.891.

(b) ROC curve for Salt-and-Pepper noise (proba-
bility = 0.01, salt vs. pepper ratio = 0.1) with
AUC = 0.587.

FIG 9. ROC curves showing the model profiling-based
classifier’s ability to distinguish clean images from
adversarial examples generated using Salt-and-
Pepper noise with two different parameter settings.
Subfigure (a) corresponds to perturbations with
probability = 0.09 and salt vs. pepper ratio = 0.2,
yielding a high AUC of 0.891. Subfigure (b) shows
performance for a lower noise level (probability =
0.01, ratio = 0.1), resulting in a reduced AUC of
0.587. The comparison highlights the impact of
perturbation strength and distribution on the run-
time behavior captured by profiling features.

only for the inference process and reduce the impact
of noise caused by other resources.

9

Deutscher Luft- und Raumfahrtkongress 2025

©2026

(a) Feature importance for FGSM attack with ϵ = 0.02.

(b) Feature importance for PGD attack with (ϵ = 0.1, α = 0.05,
steps=5)

FIG 10. Top 5 most important profiling features for dis-
tinguishing clean versus adversarial examples.

ACKNOWLEDGMENTS

We thank Protim Bhattacharjee for providing the seg-
mentation model used in this study.

References

[1] Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. To-
wards deep learning models resistant to adversar-
ial attacks, 2019. https://arxiv.org/abs/1706.060
83.

[2] Ian J. Goodfellow, Jonathon Shlens, and Chris-
tian Szegedy. Explaining and harnessing adver-
sarial examples, 2015. https://arxiv.org/abs/14
12.6572.

[3] Weilin Xu, David Evans, and Yanjun Qi. Fea-
ture squeezing: Detecting adversarial examples
in deep neural networks. In Proceedings 2018
Network and Distributed System Security Sym-
posium, NDSS 2018. Internet Society, 2018.
DOI: 10.14722/ndss.2018.23198.

[4] Jan Hendrik Metzen, Tim Genewein, Volker Fis-
cher, and Bastian Bischoff. On detecting adver-
sarial perturbations, 2017. https://arxiv.org/ab
s/1702.04267.

[5] Nicolas Papernot, Patrick McDaniel, Ian Good-
fellow, Somesh Jha, Z. Berkay Celik, and Anan-
thram Swami. Practical black-box attacks against

machine learning, 2017. https://arxiv.org/abs/
1602.02697.

[6] Ahmed Aldahdooh, Wassim Hamidouche,
Sid Ahmed Fezza, and Olivier Déforges. Ad-
versarial example detection for dnn models: a
review and experimental comparison. Artificial
Intelligence Review, 55(6):4403–4462, Jan. 2022.
ISSN: 1573-7462. DOI: 10.1007/s10462-021-
10125-w.

[7] Manaar Alam and Michail Maniatakos. Ad-
vhunter: Detecting adversarial perturbations
in black-box neural networks through hardware
performance counters. In Proceedings of the
61st ACM/IEEE Design Automation Conference,
DAC ’24, New York, NY, USA, 2024. Association
for Computing Machinery. ISBN: 9798400706011.
DOI: 10.1145/3649329.3655682.

[8] Preet Derasari, Siva Koppineedi, and Guru
Venkataramani. Can hardware performance coun-
ters detect adversarial inputs? In 2020 IEEE 63rd
International Midwest Symposium on Circuits
and Systems (MWSCAS), pages 945–948, 2020.
DOI: 10.1109/MWSCAS48704.2020.9184684.

[9] Tommaso Zoppi and Andrea Cecca-
relli. Detect adversarial attacks against
deep neural networks with gpu monitor-
ing. IEEE Access, 9:150579–150591, 2021.
DOI: 10.1109/ACCESS.2021.3125920.

[10] NVIDIA Corporation. nvidia-smi - NVIDIA Sys-
tem Management Interface program. NVIDIA
Corporation, Sept. 2025. https://docs.nvidia.
com/deploy/nvidia-smi/index.html.

[11] Paula Harder, Franz-Josef Pfreundt, Margret Ke-
uper, and Janis Keuper. Spectraldefense: Detect-
ing adversarial attacks on cnns in the fourier do-
main, 2021. https://arxiv.org/abs/2103.03000.

[12] Nilaksh Das, Madhuri Shanbhogue, Shang-Tse
Chen, Fred Hohman, Li Chen, Michael E.
Kounavis, and Duen Horng Chau. Keeping the
bad guys out: Protecting and vaccinating deep
learning with jpeg compression, 2017. https:
//arxiv.org/abs/1705.02900.

[13] Habibur Rahaman, Atri Chatterjee, and Swarup
Bhunia. Runtime detection of adversarial at-
tacks in ai accelerators using performance coun-
ters, 2025. https://arxiv.org/abs/2503.07568.

[14] inversion, Jeff Faudi, and Martin. Airbus ship
detection challenge. https://kaggle.com/competi
tions/airbus-ship-detection, 2018. Kaggle.

[15] NVIDIA. Tensorrt. https://developer.nvidia.com
/tensorrt-getting-started.

[16] Liang-Chieh Chen, Yukun Zhu, George Pa-
pandreou, Florian Schroff, and Hartwig Adam.

10

Deutscher Luft- und Raumfahrtkongress 2025

©2026

https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1412.6572
https://doi.org/10.14722/ndss.2018.23198
https://arxiv.org/abs/1702.04267
https://arxiv.org/abs/1702.04267
https://arxiv.org/abs/1602.02697
https://arxiv.org/abs/1602.02697
https://doi.org/10.1007/s10462-021-10125-w
https://doi.org/10.1007/s10462-021-10125-w
https://doi.org/10.1145/3649329.3655682
https://doi.org/10.1109/MWSCAS48704.2020.9184684
https://doi.org/10.1109/ACCESS.2021.3125920
https://docs.nvidia.com/deploy/nvidia-smi/index.html
https://docs.nvidia.com/deploy/nvidia-smi/index.html
https://arxiv.org/abs/2103.03000
https://arxiv.org/abs/1705.02900
https://arxiv.org/abs/1705.02900
https://arxiv.org/abs/2503.07568
https://kaggle.com/competitions/airbus-ship-detection
https://kaggle.com/competitions/airbus-ship-detection
https://developer.nvidia.com/tensorrt-getting-started
https://developer.nvidia.com/tensorrt-getting-started

Encoder-decoder with atrous separable convolu-
tion for semantic image segmentation, 2018. http
s://arxiv.org/abs/1802.02611.

[17] Tsung-Yi Lin, Michael Maire, Serge Belongie,
Lubomir Bourdev, Ross Girshick, James Hays,
Pietro Perona, Deva Ramanan, C. Lawrence Zit-
nick, and Piotr Dollár. Microsoft coco: Common
objects in context, 2015. https://arxiv.org/abs/
1405.0312.

[18] Dan Hendrycks and Thomas Dietterich. Bench-
marking neural network robustness to common
corruptions and perturbations, 2019. https://ar
xiv.org/abs/1903.12261.

[19] Hossein Hosseini and Radha Poovendran. Deep
neural networks do not recognize negative images,
2017. https://api.semanticscholar.org/CorpusID:
17746324.

[20] Shengzhong Liu, Shuochao Yao, Xinzhe Fu, Ro-
han Tabish, Simon Yu, Ayoosh Bansal, Heechul
Yun, Lui Sha, and Tarek Abdelzaher. Tam-
ing algorithmic priority inversion in mission-
critical perception pipelines. Commun. ACM,
67(2):110–117, Jan. 2024. ISSN: 0001-0782.
DOI: 10.1145/3610801.

[21] Bin Liang, Hongcheng Li, Miaoqiang Su, Xirong
Li, Wenchang Shi, and Xiaofeng Wang. Detect-
ing adversarial image examples in deep neural
networks with adaptive noise reduction. IEEE
Transactions on Dependable and Secure Com-
puting, 18(1):72–85, Jan. 2021. ISSN: 2160-9209.
DOI: 10.1109/tdsc.2018.2874243.

[22] Ethan Rublee, Vincent Rabaud, Kurt Konolige,
and Gary Bradski. Orb: An efficient alterna-
tive to sift or surf. In 2011 International Confer-
ence on Computer Vision, pages 2564–2571, 2011.
DOI: 10.1109/ICCV.2011.6126544.

[23] John Canny. A computational approach to edge
detection. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, PAMI-8(6):679–698,
1986. DOI: 10.1109/TPAMI.1986.4767851.

[24] Irwin Sobel and G. M. Feldman. An isotropic 3×3
image gradient operator, 1990. https://api.sema
nticscholar.org/CorpusID:59909525.

[25] Zihao Liu, Qi Liu, Tao Liu, Yanzhi Wang, and
Wujie Wen. Feature distillation: Dnn-oriented
JPEG compression against adversarial examples,
2018. http://arxiv.org/abs/1803.05787.

[26] NVIDIA. Jetson orin: Embedded systems for au-
tonomous machines. https://www.nvidia.com/e
n-us/autonomous-machines/embedded-systems
/jetson-orin/. Accessed: 2025-08-26.

[27] Marina Sokolova and Guy Lapalme. A system-
atic analysis of performance measures for clas-
sification tasks. Information Processing Man-
agement, 45(4):427–437, 2009. ISSN: 0306-4573.
DOI: https://doi.org/10.1016/j.ipm.2009.03.002.

[28] Tom Fawcett. An introduction to roc
analysis. Pattern Recognition Letters,
27(8):861–874, 2006. ISSN: 0167-8655.
ROC Analysis in Pattern Recognition.
DOI: https://doi.org/10.1016/j.patrec.2005.10.010.

11

Deutscher Luft- und Raumfahrtkongress 2025

©2026

https://arxiv.org/abs/1802.02611
https://arxiv.org/abs/1802.02611
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1903.12261
https://arxiv.org/abs/1903.12261
https://api.semanticscholar.org/CorpusID:17746324
https://api.semanticscholar.org/CorpusID:17746324
https://doi.org/10.1145/3610801
https://doi.org/10.1109/tdsc.2018.2874243
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/TPAMI.1986.4767851
https://api.semanticscholar.org/CorpusID:59909525
https://api.semanticscholar.org/CorpusID:59909525
http://arxiv.org/abs/1803.05787
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://doi.org/https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/https://doi.org/10.1016/j.patrec.2005.10.010

	Introduction
	Related Work
	Methodology
	Ship Segmentation Model
	Adversarial Image Generation
	Black-Box Attacks
	White-Box Attacks

	Inference Procedure
	Segmentation Monitoring And Features Generation
	Image Features
	Hardware Features
	Model Profiling Features

	Experimental Setup
	Hardware and Experiment Tools
	Evaluation Metrics

	Results and Analysis
	Impact of Adversarial Attacks on Model Performance
	Results Analysis by Feature Type
	Image-based Features
	Hardware-based Features
	Segmentation-based Features

	Conclusion and Future Work

