PREDICTION OF ON-BOARD CONSUMPTION: GENERATING SYNTHETIC DATA FOR MACHINE LEARNING TO OPTIMIZE CATERING WEIGHT

H. Kumawat , F. Giertzsch , R. God Institute of Aircraft Cabin Systems, Hamburg University of Technology, Hein-Saß-Weg 22, 21129 Hamburg, Germany

Abstract

There is a great potential for reducing CO₂ emissions resulting from passenger aircraft cabin. In addition to further lowering the power consumption and reducing the mass of large monuments and seats, it is above all the amount of catering that can improve the CO₂ balance. The environmental impact of overloading, as well as the disposal and incineration of catering waste makes it necessary to organize the catering process more effectively. In our today's digital world, there is still no information about the quantities consumed and the subsequent disposal of catering on board airplanes. Real world catering on the consumption are practically non-existent and represent a major challenge for the development of machine learning (ML) -based predictive models for the actual amount of meals and beverages required. This research paper focuses on overcoming the challenges posed by unavailability of in-flight catering data and enabling on-board consumption prediction. To this end, synthetic datasets were generated based on information such as statistics on consumer age, food choices, nationality, flight details, and other catering-relevant parameters. To generate the datasets closer to realism, two regions have been chosen to differentiate passenger meals and beverage preferences: A flight from Europe to east (India) and a flight to the west (USA). Utilizing the synthetic datasets, ML models were developed to predict in-flight consumption per flight, facilitating optimized catering orders and minimizing aircraft catering overload and waste, thereby reducing CO2 emissions per flight and contributing positively to environmental sustainability. The models are trained and validated using historical synthetic data from various flights journeys to ensure reliability and robustness. Based on the generated synthetic datasets, this study shows that a good prediction of catering demand that avoids overstocking of meals and beverages can be achieved. It is expected, that future access to authentic catering data on a larger scale can be used for improving and validating the synthetic data generation concept and will enhance the authenticity of synthetic datasets, resulting in precise predictions.

Keywords

In-flight catering, weight reduction, synthetic catering data, machine learning, predictive models

1. INTRODUCTION

In recent years, the growing global focus on environment protection, particularly through the reduction or avoidance of CO₂ emissions, has become an increasingly important concern in all industries striving to implement innovative sustainable strategies for low carbon emission. The aviation sector's recognition of the environmental impact associated with in-flight meals overloading and waste has directed the way for significant improvements in operational efficiency. In fact, the Food Waste Index Report 2021 shows that around 931 million tons of food, or 17% of all food sold to consumers in 2019, went into the waste bins of households, retailers, restaurants, and other food services galleys [1]. Overall, around 30% of all food production is wasted systemically. In the aviation industry, reducing in-flight food waste is equally compelling. According to the International Air Transport Association (IATA) Cabin Waste Handbook, 5.7 million tons of cabin waste were generated worldwide in 2017, with uneaten meals and beverages accounting about 20% of this. Recent studies have highlighted the benefits of reducing in-flight food waste within aviation industry, emphasizing its role in increasing fuel efficiency and reducing

 ${\rm CO_2}$ emissions [2]. This goes hand in hand with the fact that minimizing food waste not only reduces the environmental impact associated with waste disposal, but also reduces the weight, volume, and cost of catering, thereby optimizing fuel consumption. For instance, as stated in [3] environmental, social and corporate governance (ESG) reporting for the full year of 2022, Southwest Airlines reports saving 33 million gallons of fuel through on-board weight reduction.

A study identified that on-board sorting and collection programs could achieve a recycling rate of 45-58 % of the total galley and cabin waste generated by the in-flight services [4]. In addition, a study from the IATA emphasizes the potential of pre-selection of In-flight meals and real-time inventory management in minimizing meals and beverage overload [5]. This research revealed the importance of identifying in-flight catering waste as a key lever of achieving significant airline cost saving and environmental benefits. The integration of artificial intelligence (AI) can be a promising solution for addressing the challenges associated with overloading of in-flight catering and CO_2 emission. Despite various research efforts, notable improvement in this domain have yet to be achieved. The limited availability of open-source airline catering data slows down the effective

implementation and optimization of Al-driven solutions.

To address the challenge of data unavailability in airline catering, in this paper, a methodology to generate synthetic catering data has been developed. To generate synthetic data closer to reality, two regions have been selected for variability in passengers' meals and beverages choices. The selected flight routes are from Frankfurt (FRA) to New Delhi (DEL) as well as to New York (JFK), representing long-haul flight routes starting in Europe going to the east and west. The synthetic datasets were generated using, flight routes, passenger-specific preferences and consumption patterns, which were influenced by factors such as passenger nationality and demographic information. Using this synthetic dataset, a machine learning (ML) model has been trained to predict meal and beverage consumption quantities for future flights. This predictive model enables airline caterers to better forecast the quantities of meals and beverages required for specific flights, thereby facilitating reduction in food waste, more cost savings, and environmental sustainability.

2. SYNTHETIC DATA GENERATION FOR PREDICTIVE MODELING

Accurately predicting the required quantities of meals and beverages before a flight journey is essential for optimizing aviation catering inventory management and minimizing waste. In aviation, airline companies and airline catering companies work closely together to provide in-flight meals and beverages to the passengers during their flight journeys. Generally, the airline provides the forecast of number of passengers for a particular flight and informs the catering company about the required food and beverages quantities in advance. The catering company takes series of process steps to fulfil the requirements of airline and load meal tray set, beverages and non-food items in catering container. These containers are brought to the aircraft on the day of delivery and the empty catering trolleys and catering waste are unloaded. These trolleys and waste are transported back to catering facility for cleaning, and the catering waste is fed into the waste management process. This provision is done manually, with the consideration that no passenger is left without a meal during the journey in order to guarantee a better passenger experience. Sometimes, that leads to overloading of meals and beverages, as well as an increase in catering waste.

In order to improve catering management, passenger services, and waste management, a machine learning (ML) -based approach for predictive modeling was chosen for this study. In the context of ML, the training of a model requires the utilization of a training dataset specifically designated for training purposes and different testing data to validate the predictions. The unavailability of a real-world in-flight catering dataset has pushed to build a model which can generate the synthetic flight catering data. This synthetic data can be used to investigate and to evaluate the functionality and performance of predictive ML models. In the future, once real-world flight catering data becomes accessible, existing ML models can be used and adapted for even more accurate catering prediction only with minor modifications, depending on the number of features and structure of dataset.

In this paper, the synthetic dataset was generated to simulate passenger and in-flight catering consumption. The dataset consists of passenger-level features such as gender, age, flight details, nationality, meal and beverage choices, and aggregated journey-level features including total passenger count, gender and age group distribution, nationality profile, class distribution, and total consumption of meals and beverages. Dataset columns like passenger age, meals and beverage quantities, were generated using parametric statistical models, including truncated normal and uniform distributions, while categorical variables, such as gender, class, nationality, and meal choice, were simulated using probability distributions. Timestamp was also included, that shows the flight departure and arrival date and time. The synthetic catering dataset was generated using Python libraries, including NumPy, Faker and Pandas. Python libraries like Scikit-learn and Plotly were implemented to visualize data, ML model training and evaluation for catering prediction.

The model generates the in-flight meals and beverages consumption dataset for daily long-haul flight over a fiveyear period from 2015 to 2019. For Europe to the east (India), the simulated flight from Frankfurt (FRA) to New Delhi (DEL) has been selected, as there is some educational guess for the passenger choice of meals and beverages available based on location. The flight was operated by Vistara airline and the aircraft type was Boeing 787-9 Dreamliner with 30 Business Class, 21 Premium Economy and 248 Economy Class seats available [6]. For Europe to the west (USA), the simulated flight from Frankfurt (FRA) to New York City (JFK) has been selected. The flight is operated by Lufthansa airline and the aircraft type is a Boeing 747-400 which can accommodate 67 passengers in Business Class, 32 in Premium Economy, and 272 in Economy Class [7]. These two aircraft are very similar in terms of travel times and traveling passenger counts. To generate dataset for two types of flight routes (flight from Europe to the east and flight from Europe to the west), several steps have been followed. The process begins with creating data specific to passengers traveling in economy class. After that, route-specific data generated using passenger specific data for both directions, where each row represents one individual flight journey.

These two flight journeys are long-haul flights and take around 9 hours to reach their destinations. So, it was assumed that the number of in-flight meal-serving times are similar. To generate synthetic dataset for two different flight routes, several steps have been followed in Python programming as mentioned below.

- Import relevant libraries in Python required for generating synthetic flight catering dataset for example: NumPy, Pandas, Faker.
- Assign passenger nationalities using probabilistic model based on the travel destination like (FRA to DEL; IND: 70%, DE: 20%, Other: 10%) and (FRA to JFK; USA: 55, DE: 35%, Other: 10%).
- 3. Selection of time span from 01.01.2015 to 31.12.2019 (i.e. before the COVID pandemics).
- 4. Define a function to generate passenger profiles with following characteristics:
 - Gender ratio: 65 % male, 35 % female,

CC BY 4.0

2

- Name: Dummy names based on gender and nationality,
- Age: age sampled with truncated normal distribution with mean(μ) of 45 and standard deviation(σ) of 10.
- Define categories of meals (Meal_Veg and Meal_ NonVeg), beverages (Beer, whisky, etc.).
- Define four passenger age groups like: A (0-17 years), B (18-35 years), C (36-60 years) and D (above 60 years).
- Provide different mass/weight for assigning number of consumed meals and beverages based of passenger age group.
- 8. Generate Pandas data frame with all the variable shown in Table 1.
- 9. Generate and save passenger specific synthetic dataset (for details cf. section 2.1.).
- Generate and save flight journey specific dataset after applying grouping with sum() function (for details of. section 2.2.).

2.1. Passenger specific data generation

In the first step of generating passenger-specific datasets for both flights, the impact of the various biases is considered. The dataset of passenger personal fictitious details, including demographics such as name, age, gender, and nationality make the dataset closer to reality. Age selection of the passenger carried out using a truncated normal distribution with the mean (μ) value of 45 and standard deviation (σ) of 10. This approach ensures that age remains within a realistic and valid range via eliminating the possibility of generating negative ages. Additionally, the dataset incorporates meal and beverage choices, providing insights into passengers' dietary preferences. Flight details such as departure and arrival times, flight route, day of flying, which were helping in evaluating overall passenger behavior and consumption. Key demographic and cultural insights were also considered in the dataset generation. For example, a study [8] shows that approximately 24% of Indian are vegetarians, influencing veg meal preferences. On the other side, the research by Gallup [9] suggests that only 4% of Americans are vegetarian and 1% are vegan.

These biases help to build datasets that are both different and realistic. For the beverages, only 10% of adults in India (18.8% of men, 1.3% of women) reported drinking alcoholic drinks, and whisky is the most chosen alcoholic beverage by Indians [10]. In the USA, around 62% of adults drink alcoholic beverages, and their likely choices are beer and wine [11]. In this research, the passenger specific synthetic data generated using a Python script with utilizing relevant libraries like Faker, NumPy designed to simulate passenger choices for meals and beverages. To generate a dataset for each flight route only one run was required. For the FRA to DEL passenger-specific dataset, 413,574 data samples with a size of 44,633 Kilobyte (KB) were generated. The FRA to JFK dataset consists of 435,274 data samples with the total size of 44,633 KB. The dataset generated in this study consists of 16 variables representing passenger demographics and nationalities. The shapes of dataset for both routes has changed because of variation in number of travelling passenger counts. This comprehensive dataset serves as a valuable resource for research for developing

passenger focused cabin services. The key variables are shown in Table 1.

TAB 1. Variables for passenger specific synthetic dataset.

Variable name	Description
Gender	Gender of the passenger (dummy)
Given_Name	Full name of passenger (dummy)
Age	PAX age (dummy)
Class	PAX travelling class (Y-class)
Dep_Timestamp	Flight departure time from origin
Arr_Timestamp	Flight arrival time at destination
Year	Year of journey
Month	Month of journey
Day_of_Week	Day of journey week
Flight_Number	Flight number
Origin	Origin of flight journey
Destination	Destination of flight journey
Nationality	Nationality of passenger
Meal	Meal choice of PAX (Veg / NonVeg)
Cold_Beverage	Cold beverage choice of passenger
Meal_Description	Information about consumed meal

2.2. Flight specific data generation

The flight-specific dataset is the second step of generating synthetic data, which is used for developing a predictive model for airline catering. This dataset is extension of the passenger specific dataset. The flight-specific dataset for the flight FRA to DEL and the flight from FRA to JFK has 1,825 rows. Both datasets include 20 columns, capturing detailed information about consumed quantities of meals and beverages in flight journeys. The two datasets have same number of samples, as the number of flight journeys was identical. The size of each dataset has been reduced to 156 KB.

The flight specific datasets include variables related to the number of passengers per flight and their consumption quantities of meals and beverages. This dataset facilitates analyzing meals and beverages choices based on passenger age and nationality. By examining the relationships between passenger demographics, passenger counts, and consumption quantities, valuable insights can be derived to enhance service offerings and operational efficiency in the aviation industry. The datasets were utilized for ML model training for both the flight route for each item available in catering. The variables that are used in creating catering consumption predictive ML models are shown in Table 2.

TAB 2. Variables for flight specific synthetic dataset.

Variable Name	Description								
Date	Date of flight journey								
No_Pax	No. of passengers								
Males	No. of male PAX								
Females	No. of female PAX								
Nationality_Origin	No. of PAX with nationality of								
	origin (DE)								
Nationality_Dest	No. of PAX with nationality of								
	destination (IND / USA)								
Nationality_Other	No. of PAX with other								
	nationality								
Eco_Pax	No. of PAX with Y-class								

CC BY 4.0 3

Age_Below_18	No. of PAX with age below 18 years
Age_Between_18to35	No. of PAX with age between 18 to 35 years
Age_Between_36to60	No. of PAX with age between 36 to 60 years
Age_Above_60	No. of PAX with age above 60 years
Meal_NonVeg	No. of non-vegetarian meals consumed during journey
Meal_Veg	No. of vegetarian meals consumed during journey
Juice	No. of juice bottles consumed during journey (1 liter)
Beer	No. of beer canes consumed during journey (330 ml)
Wine	No. of wine bottles consumed during journey (750 ml)
Whisky	No. of whisky bottles consumed during journey (750 ml)
Softdrinks	No. of soft drink cans consumed during journey (330 ml)
Water	No. of water bottles consumed during journey (100 ml)

3. SYNTHETIC DATA: VARIATION, SCALIBILITY AND DISTRIBUTION IN IN-FLIGHT CATERING PREFERENCES

Two flight specific in-flight catering synthetic datasets were generated, incorporating various factors such as aircraft type, flight routes, passenger preferences for meals and beverages, and geographic locations. A dataset includes the number of seats booked across economy class, with biases intentionally introduced based on available information from public sources and informed assumptions. The datasets generated represent daily long-haul flight data over a five-year period from 01.01.2015 to 31.12.2019. The timespan selected till end of 2019 because of the COVID pandemics has changed the flight journey trends for more than 2 years. In this research five years of dataset were used because it includes the information about passenger count trend and catering consumption which was suitable to investigate ML predictive models.

The sample of generated datasets are shown in the Appendix A of this paper for both the flight routes. The Table A1 shows the sample of passenger specific dataset for the flight from FRA to DEL. In this table all columns with passenger details, flight details, and also the selection of meals and beverages per passenger is contained. As mentioned above, the passenger-specific dataset was modified to generate flight-specific data, in which each row in the table represents a single flight journey. The sample of flight specific dataset can be seen in Table A.3. The same method was used to create the dataset for flights from FRA to JFK. The passenger-specific data is shown in Table A.2, while the flight-related data is shown in Figure A.4. These datasets help in understanding passenger patterns and flight characteristics on international routes.

The datasets were designed to closely reflect real-world passenger behavior and demographic patterns. Bias selection and variable design were informed by publicly available data sources and refined through internal discussions within the institution. For instance, Passengers under the age of 18 are unlikely to consume alcoholic beverages, and those over 65 are tend to avoid alcohol. Additionally, female passengers likely to prefer juice or wine over stronger alcoholic beverages. In contrast, American nationals are more inclined to opt for non-vegetarian meals. Beverage quantities were determined based on serving sizes per bottle. These parameters, along with others, were carefully incorporated to create a comprehensive and realistic synthetic dataset for this research.

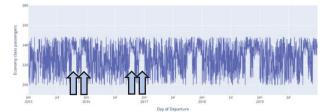


FIG 1. Economy class PAX counts for flight FRA-DEL.

The generated synthetic datasets also have variability in the number of travelling passengers. For example, Figure 1 shows, there is a significant increase in passenger traffic on routes such as Frankfurt to New Delhi in October and December, due to the festival seasons, reflecting seasonality in the data. On the other hand (cf. Figure 2), the passengers travelling to the USA are more in March and December because of Easter and Christmas vacations.

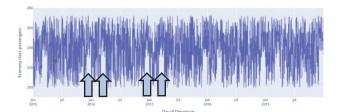


FIG 2. Economy class PAX counts for flight FRA-JFK.

4. INVESTIGATION OF MACHINE LEARNING PREDICTIVE MODELS WITH GENERATED SYNTHETIC DATA

In this study, the generated synthetic dataset which representing in-flight catering consumption was used to train and test ML models, in order to evaluate their predictive performance. Machine learning (ML) is a set of methods that enable computers to make predictions or to improve process efficiency based on data [12]. For example, to predict stock price, the ML model learns the patterns from historical stock performance.

In order to obtain a predictive catering loading list for future flights for airline and catering companies, a synthetic dataset must be created. The flight specific dataset was used to investigate various machine learning models to obtain predictions about the quantities of meals and beverages.

Linear Regression (LR): A linear regression model predicts the target as a weighted sum of the feature inputs [12]. The linear regression model can be used to get prediction

CC BY 4.0

y based on some input features x. It follows the mathematical equation for a single instance as given below:

(1)
$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \epsilon$$

The prediction of an instance is a weighted sum of its p features. The β represents the coefficients. The ϵ is the difference between the prediction and the actual outcome.

K-Nearest Neighbor Regression (k-NN): k-NN regression is a non-parametric method that, in an intuitive manner, approximates the association between independent variables and the continuous outcome by averaging the observations in the same neighborhood [13]. The selection of closest point is based on calculated Euclidean distance.

(2)
$$D(p,a) = \sqrt{(p_1 - a_1)^2 + (p_2 - a_2)^2 + \dots + (p_n - a_n)^2}$$

p is the new predicted point and a is the actual point. The selection of k determines the number of neighbors of observation.

XGB Regressor: Extreme Gradient Boosting (XGBoost) regressor is an implementation of the gradient boosting machine learning algorithm which is a type of ensemble learning method that combines the prediction for multiple weaker models to create a stronger, more accurate model [14]. It works by combining of decision trees, where each tree make prediction based on a subset of provided data.

To build the machine learning model, the flight specific dataset has been divided in 1612 training data sample and 213 testing data sample. The above mentioned three ML model have been trained on the selected input features i.e. Date, No Pax, Males, Females, Nationality_Origin, Nationality_Dest, Nationality_Other, Eco_Pax, Age_Below_18, Age_Between_18to35, Age_Between_36to60 and Age_Above_60. Each meal item and beverages consumption have different impact of the ML input features. Therefore, the ML model was trained for each target item for example: Meal_Veg, Meal_NonVeg, etc. The ML models are trained for regression not for classification so to evaluate the performance of the model, Root Mean Squared Error (RMSE) has been used. RMSE is the square root of the mean of the square of all of the error [15].

(3)
$$RMSE = \sqrt{\frac{1}{n} \sum_{i=0}^{n} (S_i - O_i)^2}$$

where O_i are the observations, S_i predicted values of a variable, and n the number of observations available for analysis. RMSE was used to evaluate predictive ML models because it captures the magnitude of prediction error and penalize large deviation that was needed in meals and beverages prediction. RMSE squares the errors, so the large error grows even more in the final score. This was helpful for predicting consumed meals and beverage quantities. For example: when the prediction of consumed meals quantity was 150 and actual consumption was 100, then the error is big. Use of RMSE helps to reduce the

overloading of the catering waste

5. MACHINE LEARNING MODEL EVALUATION

This work aimed to investigate a predictive catering ML model to forecast the required quantities of meals and beverages for the future flight journeys. To investigate the performance of ML algorithms, initially the target feature for the predictive model has been selected as consumed water bottle per flight journey. That means the model will be designed to predict the required number of water bottle for the subsequent 30 days. Three regression ML models were used: LR, k-NN, and XGB Regressor. The LR was trained using the default parameters from Scikit-learn, while the k-NN model was configured with n_neighbors = 2 to detect closer relationships in the data. For XGB Regressor, parameters included n estimators = 100, max depth= 3, and early_stopping_rounds = 50 to reduce model complexity and prevent model from overfitting. The Figure 3 indicates that, all three ML model predictions for flight FRA to DEL and Figure 4 is for flight from FRA to JFK.

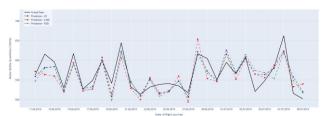


FIG 3. Comparison of ML model prediction with actual water bottle quantities (FRA-DEL).

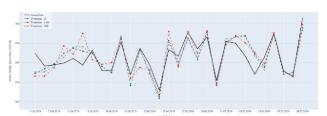


FIG 4. Comparison of ML model predictions with actual water bottle quantities (FRA-JFK).

The comparison of model performance had been done via employing RMSE value. The LR (RMSE 8.29) and XGB regressor (RMSE 8.49) demonstrate similar result, whereas with k-NN the RMSE (9.65) is slightly worse. The result indicates that the predicted quantities closely align with the actual quantities of water bottles. The RMSE value indicate the average deviation between predicted water bottle quantities and actual quantities. LR has lower RMSE value such as 8.29, represents the difference is about 8 bottle which was lesser than RMSE value 9.65 with the round of 9 bottles with KNN model.

Linear Regression is a well-established machine learning algorithm that can be applied on small-scale datasets and it require relatively less computational power to run. This makes it suitable for scenarios with limited computational resources. XGBoost regressor is gradient boosting algorithm, that requires GPU to run and it is better to use when there is high volume of in-flight catering data available. In this study, linear regression has been selected as the primary model for acquiring the prediction due to its less complexity and resource requirement. In addition, XGBoost regressor will be used in situations where large-

CC BY 4.0 5

scale real world in-flight catering data is available as well as high computational power for handling complex dataset.

6. RESULT AND DISCUSSION

To evaluate inventory efficiency and forecasting accuracy, actual, predicted, and loaded quantities for meals and beverages were converted into weight-based metrics. Each item's unit weight was standardized and converted to grams for consistency. In this study, all the meals and beverages items were assigned to their respective mass. The loaded quantities were considered with the number of passengers travelling. The item names, their masses and the loaded quantities for each catering item for 30 days were presented in Table 3. The quantities were based on the number of travelling passenger and their food choices.

TAB 3. Inflight catering items, mass and quantities.

Catering item	Mass per item (gm)	Loaded Quantity (FRA-DEL)	Loaded Quantity (FRA-JFK)
Meal_NonVeg	450	100	180
Meal_Veg	400	100	50
Juice	1030	100	100
Beer	350	100	150
Wine	1600	6	8
Whisky	1200	6	8
Softdrinks	358	100	150
Water	100	650	750

The study shows how much catering mass can be reduced with the catering predictive LR model. In Figure 5, the actual loaded mass or water bottles, actual consumption and LR prediction have been shown for the fight from FRA to DEL. The plot below shows the around 10 to 15 kg mass can be reduced if water bottles are loaded in aircraft considering ML model predictions. The water bottle mass for flight journey from FRA to JFK can be reduced by 20 to 25 kg that is show in Figure 6.

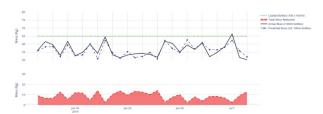


FIG 5. Loaded water bottle mass, predicted mass and mass reduction (FRA-DEL).

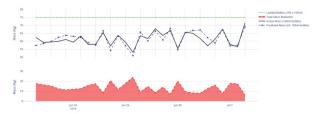


FIG 6. Loaded water bottle mass, predicted mass and mass reduction (FRA-JFK).

The main aim of this research was to evaluate how much total catering mass can be reduced for the flight journey that

can help to not overload and also passenger get sufficient food and beverage items in their journey. The predictive ML model are built for each item that helps to generate prediction for a specific item. The quantities of meals and beverages for both the flights for 30 days are collected via executing LR model. Afterwards, the predicted quantities are multiplied with their respective mass to calculate total predictive mass for the flight. The Figure 7 shows the total loaded mass by airline, total actual consumed mass for flight and the total predicted mass from the predictive model for FRA to DEL flight. The area below shows, how much potential mass can be reduced if the predictive model is used for loading the meals and beverages. For flight FRA to DEL total mass of 70 to 100 kg can be reduced. The Figure 8 shows the overloading of 100 to 130 kg can be avoided in flight from FRA to JFK with the implementation of ML catering predictive model.

FIG 7. Loaded total mass, predicted mass and mass reduction for flight (FRA-DEL).



FIG 8. Loaded total mass, predicted mass and mass reduction for flight (FRA-JFK).

7. CONCLUSION AND OUTLOOK

This study investigated the potential of generated synthetic data and predictive machine learning models for in-flight catering to reduce overloading of meals and beverages that can result in decreasing CO₂ emissions, as well as better inventory management. Based on the generated synthetic datasets, this study shows that a good prediction of catering demand that avoids overstocking of meals and beverages. The results show that with the use of generated synthetic data, catering weight reduction of 70 to 100 kg per flight is plausible. The generation of synthetic datasets for flight from FRA to DEL and FRA to JFK is done by considering the flight routes and passenger food choices to make them close to reality. Machine learning algorithms, including LR, k-NN, and XGB regressor are built with synthetic data and selected based on collected RMSE values.

The linear regression performs the best among the three of them, and for each catering item such as Meal_Veg, Meal_NonVeg, and water a LR model has been created. These models' predictions for each item combined together to obtain the complete list of predicted catering item quantities for specific flight journey. Finally, the prediction

CC BY 4.0

6

for the loading meals and beverage quantities is acquired, and the total mass is calculated. The total mass has been compared to the actual loaded mass to see the potential of reducing total catering mass for both flight journeys. This research opens the door to introduce machine learning in airline catering and its capability to decrease the catering waste and CO₂ emission. As of now the unavailability of real-world catering data problem is approached by using synthetic data. Once real-world flight catering data is available, implementing and applying this approach in practice can optimize the loading of catering, thus reducing waste, fuel consumption and consequently, CO₂ emissions.

ACKNOWLEDGEMENTS

This work was supported by the LuFo VI-1 project "Lernendes Galley-Catering-System" (engl.: Learning Galley Catering System, LGCS, project number 20D1928C) funded by the Federal Ministry for Economic Affairs and Climate Action based on the decision of the German Bundestag.

Contact address:

hiteshkumar.kumawat@tuhh.de

REFERENCES

- [1] H. Forbes, T. Quested and C. O'Connor. UNEP Food Waste Index Report 2021. United Nations Environment Programme, Nairobi, 2021. https://wedocs.unep.org/bitstream/handle/20.500.11822/35280/Foodwaste.pdf (accessed 2025/19/09).
- [2] International Air Transport Association (IATA). IATA Annual Review, 2023. https://www.iata.org/content-assets/c81222d96c9a4e0bb4ff6ced0126f0bb/annual-review-2023.pdf (accessed 2025/19/09).
- [3] Southwest Airlines Co. 2022 One Report. https://www.southwest.com/swa-resources/pdfs/communications/one-reports/Southwest-Airlines-2022-One-Report.pdf (accessed 2025/19/09).
- [4] X. D. Li, C. S. Poon, S. C. Lee, S. S. Chung and F. Luk. Waste reduction and recycling strategies for the in-flight services in the airline industry Resources, Conservation and Recycling. Vol. 37, p. 87–99, 2002. https://doi.org/10.1016/S0921-3449(02)00074-5 (accessed 2025/19/09).
- [5] E. Morris, M. Roberts, K. Patterson and N. Sweet. IATA Cabin Waste Handbook, 2019. https://www.iata. org/contentassets/821b593dd8cd4f4aa33b63ab9e35 368b/iata-cabin-waste-handbook.pdf (accessed 2025/19/09).
- [6] UK Boeing 787-9 Type 1. AeroLOPA Detailed aircraft seat. https://www.aerolopa.com/uk-789-1 (accessed 2025/19/09).
- [7] Boeing 747-400, Lufthansa AG. Seat maps Boeing B747-400. https://www.lufthansa.com/us/en/74e (accessed 2025/19/09).
- [8] N. Fitzgerald. Veganism Statistics Indian in 2022 -How many vegans are there in India? Truly Experiences Blog, 27 Oct. 2023. https://trulyexperiencesblog.com/veganism-statistics-india/ (accessed)

- 2025/19/09).
- J. M. Jones. In U.S., 4% Identify as Vegetarian, 1% as Vegan. Gallup.com, 24 Aug. 2023. https://news.gallup.com/poll/510038/identify-vegetarian-vegan.aspx (accessed 2025/19/09).
- [10] R. Rana. Alcohol Consumption in India 2024. Know Noida City, 4 July 2024. https://www.noidabusinessguide.com/alcohol-consumption-in-india/ (accessed 2025/19/09).
- [11] M. Brenan. More Than Six in 10 Americans Drink Alcohol. Gallup.com, 14 August 2023. https://news.gallup.com/poll/509501/six-americans-drink-alcohol.aspx (accessed 2025/19/09).
- [12] C. Molnar. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. https://christophm.github.io/interpretable-ml-book/ (accessed 2025/19/09).
- [13] A. Teixeira-Pinto. 2 K-Nearest Neighbours Regression Machine Learning for biostatistics, https://book.down.org/tpinto home/Regression-and-Classification /k-nearest-neighbours-regression.html (2022).
- [14] J. D. Hedengren, Machine Learning for Engineers-XGBoost Regressor, https://apmonitor.com/pds/in_dex.php/Main/XGBoostRegressor (accessed 2025/19/09).
- [15] T. O. Hodson. Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not. Geoscientific model development. Vol. 15, https://doi.org/10.5194/gmd-15-5481-2022 (2022).

CC BY 4.0 7

APPENDIX A:

TAB A.1. PAX specific synthetic dataset (FRA-DEL)

Gender Age Class	Month Day_of_Week Flight_Number Origin Destination Nationality Meal Cold_Beverage Meal_Description
F 45 Economy	01 4 UK26 FRA DEL IND Meal_Veg Softdrinks Vegetable Pasta
F 56 Economy	4 UK26 FRA DEL IND Meal Veg Softdrinks
M 38 Economy	FRA DEL IND Meal_Veg
M 29 Economy	4 UK26 FRA DEL IND Meal_Veg Softdrinks 4 UK26 FRA DEL IND Meal_Veg Wine Ve
F 55 Economy	4 UKZ6 FRA DEL IND Meal_veg Soffdrinks 4 UKZ6 FRA DEL IND Meal_veg Wine 4 UKZ6 FRA DEL IND Meal_veg Juice
:	4 UK26 FRA DEL IND Meal-Veg Softdrinks 1 VINC Meal-Veg Softdrinks 1 VINC Meal-Veg Wine 1 VINC Meal-Veg Indice 1 VI
F 45 Economy	4 UK26 FRA DEL IND Meal_Veg Softdrinks 4 UK26 FRA DEL IND Meal_Veg Wine 4 UK26 FRA DEL IND Meal_Veg Juice 4 UK26 FRA DEL IND Meal_Veg Beer
M 42 Economy	4 UKZ6 FRA DEL IND Meal_Veg Softdrinks 1 UKZ6 FRA DEL IND Meal_Veg Wine 1 UKZ6 FRA DEL IND Meal_Veg Wine 1 UKZ6 FRA DEL IND Meal_Veg Beer 1 UKZ6 FKA DEL IND MEAL_VEG
M 51 Economy	4 UK26 FRA DEL IND Meal_Veg Softdrinks 4 UK26 FRA DEL IND Meal_Veg Wine 4 UK26 FRA DEL IND Meal_Veg Juice 1 UK26 FRA DEL IND Meal_Veg Beer
F 40 Economy	4 UK26 FRA DEL NND Meal_Veg Softchinks 1 UK26 FRA DEL NND Meal_Veg Softchinks 1 UK26 FRA DEL NND Meal_Veg Wine 1 UK26 FRA DEL NND Meal_Veg Beer 1 UK26 FRA DEL NND Meal_Veg Beer 1 UK26 FRA DEL NND Meal_Veg Beer 1 UK26 FRA DEL NND Meal_Noveg Beer 1 UK26 FRA DEL NND Meal_Noveg Whisky 1 UK26 FRA DEL NND Meal_Noveg Softchinks 1 UK26 FRA DEL NND MEAL NND ME
M 37 Economy	4 UKZ6 FRA DEL NND Meai_Veg Softchinks VICA DEL NND Meai_Veg Softchinks VICA DEL NND Meai_Veg Softchinks VICA DEL NND Meai_Veg Wine VICA DEL NND Meai_Veg Beer VICA DEL NND Meai_NonVeg Whisky VICA DEL NND Meai_NonVeg Softchinks VICA DEL NND MEAI_NON MEAI_

TAB A.2. PAX specific synthetic dataset (FRA-JFK)

Meal_Description	Beef Stew	Beef Stew	Beef Stew	Chicken Rice	Beef Stew		Beef Stew	Chicken Rice	Beef Stew	Chicken Rice	vergetable Curry
Cold_Beverage	Beer	Softdrinks	Juice	Beer	Juice		Beer	Juice	Beer	Juice	Beer
Meal	Meal_NonVeg	Meal_NonVeg	Meal_NonVeg	Meal_NonVeg	Meal_NonVeg		Meal_NonVeg	Meal_NonVeg	Meal_NonVeg	Meal_NonVeg	Meal Veg
Nationality	NSA	DEU	NSA	NSA	DEU	:	DEU	Other	DEU	Other	Other
Destination	ЯЧ	ЯЧ	Ή	ЯЧ	ЯЧ	:	ЯŢ	Ϋ́	Ή	ЯЧ	ΙŁ
Origin	FRA	FRA	FRA	FRA	FRA	:	FRA	FRA	FRA	FRA	FRA
Flight_Number	LH400	LH400	LH400	LH400	LH400	:	LH400	LH400	LH400	LH400	1 H400
Day_of_Week	4	4	4	4	4		.1	1	1	1	-
Month	10	10	10	10	01		12	12	12	12	12
Year	2015	2015	2015	2015	2015		2019	2019	2019	2019	2019
Water	2	е	2	2	3		4	2	2	4	c
Class	Economy	Economy	Economy	Economy	Economy	:	Economy	Economy	Economy	Economy	Fronomy
Age	58	39	49	48	44		57	51	32	52	44
Gender	Σ	Σ	Σ	Σ	Σ	:	ш	Σ	4	ш	M
Given_Name	Richard	Eric	Norbert	Timo	Werner	:	Tracy	Andrew	Erna	Sarah	Michael
Arr_Timestamp (2015-01-02 00:00:00	2015-01-01 00:00:00 2015-01-02 00:00:00	2015-01-01 00:00:00 2015-01-02 00:00:00	2015-01-01 00:00:00 2015-01-02 00:00:00	00:00:00 2015-01-02 00:00:00	:	00:00:00 2019-12-31 00:00:00	2019-12-30 00:00:00 2019-12-31 00:00:00	2019-12-30 00:00:00 2019-12-31 00:00:00	2019-12-30 00:00:00 2019-12-31 00:00:00	2019-12-30 00:00:00 2019-12-31 00:00:00
Dep_Timestamp	2015-01-01 00:00:00	2015-01-01 00:00:00	2015-01-01 00:00:00	2015-01-01 00:00:00	2015-01-01 00:00:00	:	2019-12-30 00:00:00	2019-12-30 00:00:00	2019-12-30 00:00:00	2019-12-30 00:00:00	2019-12-30 00:00:00
		2	m	4	2		436247	436248	436249	436250	436251

TAB A.3. Flight specific synthetic dataset (FRA-DEL)

8

Water	009	604	587	909	621	:	580	581	969	629	638
Softdrinks	0.79	29.0	73.0	75.0	73.0		79.0	70.0	70.0	84.0	73.0
Whisky	2.0	2.0	2.0	2.0	2.0		2.0	2.0	3.0	2.0	1.0
Wine	3.0	3.0	3.0	4.0	3.0		4.0	3.0	3.0	2.0	2.0
Beer	38.0	33.0	31.0	22.0	32.0		23.0	32.0	28.0	32.0	38.0
Juice	0.96	85.0	73.0	95.0	93.0		81.0	89.0	89.0	84.0	95.0
Meal_Veg	143.0	127.0	124.0	142.0	144.0	:	156.0	124.0	147.0	155.0	132.0
Meal_NonVeg	100.0	102.0	102.0	102.0	103.0	:	86.0	113.0	97.0	93.0	113.0
Age_Above_60	11	11	6	17	10	:	13	12	15	14	13
5 Age Between 36to60	191	178	158	187	189		172	183	195	191	178
Age_Between_18to35 Ac	40	40	57	39	46		55	42	34	43	54
Age_Below_18	1	0	2	1	2	:	2	0	0	0	0
Eco_Pax	243	229	226	244	247		242	237	244	248	245
Nationality_Other	59	28	28	33	28		31	30	28	35	28
Nationality_Dest	166	136	141	141	157	:	154	150	153	157	150
Nationality_Origin	48	99	57	70	62		57	57	63	56	- 67
Females	83	78	80	9/	74		88	16	79	84	95
Males	160	151	146	168	173	:	154	146	165	164	150
No Pax	243	229	226	244	247		242	237	244	248	245
Date	2015-01-01	2015-01-02	2015-01-03	2015-01-04	2015-01-05		2019-12-26	2019-12-27	2019-12-28	2019-12-29	2019-12-30
	1	2 ;	3	4	5 2	:	1821 2	1822 2	1823 2	1824 2	1825 2

TAB A.4. Flight specific synthetic dataset (FRA-JFK)

Water	558	582	593	520	570	:	605	658	654	653	684
Softdrinks	18.0	33.0	29.0	29.0	35.0		24.0	31.0	27.0	29.0	31.0
Whisky	3.0	2.0	4.0	2.0	3.0		3.0	3.0	3.0	3.0	3.0
Wine	2.0	3.0	5.0	4.0	4.0		4.0	7.0	4.0	3.0	3.0
Beer	94.0	98.0	0.68	75.0	79.0	:	94.0	0.68	95.0	84.0	94.0
Juice	47.0	46.0	49.0	55.0	38.0		45.0	62.0	62.0	70.0	71.0
Meal_Veg	25.0	38.0	34.0	33.0	21.0	:	27.0	32.0	29.0	31.0	37.0
Meal_NonVeg	195.0	197.0	220.0	183.0	197.0	:	206.0	236.0	224.0	223.0	233.0
Age_Above_60	13	6	12	13	8		13	12	18	17	16
Age_Between_36to60	169	184	200	161	168		182	213	184	189	203
Age_Between_18to35/	37	41	41	40	40		37	43	51	48	51
Age_Below_18	1	1	1	2	2		1	0	0	0	0
Eco_Pax	220	235	254	216	218		233	268	253	254	270
Nationality_Other	25	39	37	33	36		29	40	36	36	38
Nationality_Dest	125	133	156	125	127		144	148	149	140	156
Nationality_Origin	70	63	61	28	55	:	09	80	89	78	9/
Females	73	77	68	69	81		70	100	86	06	86
Males	147	158	165	147	137		163	168	155	164	172
No Pax	220	235	254	216	218		233	268	253	254	270
Date	2015-01-01	2015-01-02	2015-01-03	2015-01-04	2015-01-05		2019-12-26	2019-12-27	2019-12-28	2019-12-29	2019-12-30

CC BY 4.0