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Abstract
Satellites as small as cubesats and other Nanosatellites can generate vast amounts of optical data using high-
resolution and multispectral image sensors. Coupled with the growing popularity of proliferated earth obser-
vation constellations consisting of many small satellites instead of larger, more traditional earth observation
satellites, this presents new challenges.
Firstly, this data has to be downlinked from the satellites to ground stations, a task which is made more
complicated with increasing numbers of satellites in a constellation. Additionally, smaller satellites tend to
have less power available for transmitting, as well as smaller antennas, reducing downlink speeds. Secondly,
the data must be analyzed to extract mission-specific information depending on the current use-case: For
example, wildfires have to be identified or the location and type of ships detected. For many applications, only
these extracted meta-information are relevant, not the actual satellite image itself. These necessary steps of
downlinking and image analysis can lead to large delays between image acquisition and actionable decisions
being made on the basis of this data.
In this paper we describe the integration of an onboard image analysis payload into the UWE-5 satellite mission,
an educational communications satellite mission consisting of two 3U CubeSats. This processing unit features
two boards, each containing a Microchip PolarFire MPFS250T FPGA SoC. In this architecture, one FPGA
SoC controls the camera payload, while the second one synthesizes a Machine Learning (ML) accelerator to
analyze camera data onboard the satellite using Convolutional Neural Networks (CNNs). This approach enables
the satellite to evaluate the usefulness of specific images by analyzing the degree of cloud cover or to detect
features deemed important by the operator, accelerating the path from data acquisition to actionable insight
and reducing data volume.
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• COTS Commercial Off The Shelf
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• ESSEO Embedded Systems and Sensors for Earth
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• LE Logic Element
• ML Machine Learning
• MSS Microprocessor Subsystem
• OBC On Board Computer
• RTOS Real-Time Operating System
• SoC System-on-Chip
• SPPM Smart Processing and Power Module
• UWE Unversity of Würzburg Experimental Satellite

1. INTRODUCTION

In this paper we describe the integration of an on-
board image analysis payload into a 3U CubeSat. The
necessity for such processing platforms arises from the
rapidly increasing numbers of earth observation plat-
forms as small as nano- and microsatellites, each equip-
ped with high resolution multispectral cameras and ge-
nerating large amounts of data. Examples for this are
the Planet Labs Dove constellation of 3U Cubesats,
consisting of over 150 satellites1, the Satellogic Aleph-
1 constellation2 consisting of 52 satellites measuring
51× 57× 82 cm or a constellation of Lemur-Cubesats
operated by Spire Global3

1https://www.planet.com/our-constellations/ (last accessed
2025/08/17)

2https://satellogic.com/technology/constellation/ (last
accessed 2025/08/17)

3https://spire.com/space-services/lemur-space-platform/
(last accessed 2025/08/18)
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With the traditional approach for Earth observation,
the optical data generated by these satellites has to
be downlinked to terrestrial base stations before being
analyzed for mission-specific information such as the
presence and location of wildfires, ships or planes. This
poses multiple challenges: Small satellites tend to offer
slower downlink speeds, increasing the time required
to downlink high-resolution optical data. Additionally,
with increasing numbers of satellites are deployed in a
constellation, either additional groundstations are re-
quired, or the contact periods allocated to each satelli-
te have to be reduced. In order to mitigate this, compa-
nies such as Spire Global started adding ISLs to their
satellites, enabling the forwarding of data through the
constellation between satellites until it can be sent to
ground by a satellite passing over a base station.
Once received by the base station, the images are ana-
lyzed by humans or machines: In the first step, cloud
cover and other weather conditions can render images
useless for most purposes, leading to them being im-
mediately discarded. Additionally, if the purpose is not
general Earth observation such as in the Landsat- or
Sentinel-series of satellites, only images containing spe-
cific features are relevant. For example an image not
containing ships will be discarded, if the operator is fo-
cused on the tracking of ships. In the latter case, infor-
mation like position, size, type and heading of vessels
will be extracted, but it is not necessary to preserve
the complete optical image.
Since in these cases mostly the meta-information ex-
tracted from the images are relevant and not every
individual image, it can be beneficial to perform the
image analysis already onboard the satellite, offering
multiple advantages: First, images that are unusable
due to cloud coverage or other adverse weather effects
can be discarded immediately, freeing up limited dow-
nlink capacity. Second, images can be pre-selected or
assigned downlink priority based on the satellite’s mis-
sion or alternatively, the extracted meta-information
such as positions of ships or wildfires can be downlin-
ked directly, drastically reducing transmission require-
ments. Additionally, enhancing the onboard autonomy
capabilities of spacecraft both in orbits and landed on
planets is desirable, particularly for those with limi-
ted communication capabilities and for mobile systems
such as rovers.
In this paper, we describe the design of a new edge AI
processing unit, its expected performance its integrati-
on into a 3U Cubesat for validation. Section 2 gives an
overview over the current state of the art in onboard
processing of payload data aboard satellites. The phy-
sical architecture of the proposed processing unit and
its integration into a satellite, as well as the software
architecture and integration, are described in section
3. Section 4 and section 5 contain information on the
structure of the ML architecture and the deployment
of custom ML models, respectively. An outlook on fu-
ture work is provided in section 6.

2. STATE OF THE ART

Onboard data processing in spacecraft is growing in
importance, particularly focussing on processing visual
image data. Here, ML techniques are used for various
purposes, such as the detection of clouds in hyperspec-
tral images [1] and the identification of wildfires [2].
Additional applications include calculating the electri-
cal energy required by a rover to move to a target desti-
nation [3] or the localization of planetary rovers after
landing [4]. In order to run these ML models newer,
more powerful onboard processing platforms are requi-
red. These can either be COTS-systems or purpose-
designed onboard processing units. Several companies
started to either include onboard image analysis hard-
ware and software in their existing product portfolios,
or were founded with the specific purpose of providing
such products and services.
One company specializing in Spacecraft onboard com-
puting is Ubotica Technologies with their line of Co-
gniSAT processing platforms. These platforms follow
the PC104 form-factor and are built around the Intel
Movidius Myriad Vision Processing Units [5], a line of
dedicated processors for ML-based image processing.
The complete boards have a typical power consumpti-
on of 2W for image processing tasks, with peak power
consumption below 5W. Deployed in the CogniSat-
6 satellite, the CogniSat-XE2 processing unit has a
peak power consumption of about 3.5W while detec-
ting ships in multispectral images with a low-power
standby consumption of 15mW.
A CogniSat-XE1 processing unit is also deployed on
the Φsat-2 mission [6] to deploy and test ML algo-
rithms in space. Developed by ESA with the experi-
ence from Φsat-1, which validated onboard cloud de-
tection, Φsat-2 aims to deploy various so-called AI-
Apps in-orbit to verify the applicability and useful-
ness of ML applications onboard EO satellites4. The-
se AI-Apps are detailed in [7]. One such application
is the Sat2Map-App, developed by CGI, that uses a
Cycle-Consistent Generative Adversarial Network to
automatically generate maps of accessible roads from
satellite images. Next is a Maritime Vessel Detection
and Classification APP developed by CEiiA, as well
as an application for the detection of anomalies in ma-
rine ecosystems by IRT Saint Exupéry Technological
Research Institute. The latter detects incidents such
as oil spills, algae blooms and sediment flooding in re-
al time. GEO-K provides a Deep Image Compression
App, which compresses images onboard the satellite
using ML-techniques to reduce the size for downlink,
while enabling reconstruction on the ground without
the loss of relevant information. An application for the
detection of wildfires - PhiFire AI developed by Tha-
les Alenia Space - classifies regions into fire, safe, burnt
and water zones. Lastly, an App for Cloud Detection
as a service is provided by KP Labs. This can be used
by other apps to automatically discard images with

4https://www.open-cosmos.com/news/phisat-2-launch (last
accessed 2025/08/29)
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high percentage of cloud cover in order to reduce the
necessary downlink capacity.
KP Labs was founded with the specific goal of suppor-
ting onboard data processing and analysis on satellites.
The company offers different onboard processing plat-
forms for general data processing and for the execution
of ML algorithms: The Antelope DPU has the PC104
form factor, 8GiB of DDR4 RAM, 4GB or 8GB SLC
NAND Flash and a Zynq UltraScale+ MPSoC contai-
ning Quad-Core ARM Cortex A53CPU and varying
sizes of FPGAs. The supply voltage of the Antelope
DPU can lie between 5V and 14V. The FPGA can
be configured to perform data processing or run ML
applications, with the ability for in-orbit FPGA recon-
figuration.
The Leopard-DPU contains a Zynq UltraScale+
ZU6EG to ZU15EG MPSoC, containing the same
CPU as the Antelope-DPU, but with a larger FPGA.
DDR4 RAM and SLC Flash-based file system storage
are both available from 4GB to 16GiB, with up
to 512GiB SLCC Flash for data storage. According
to [8], up to 3TOPS of ML inference performance
can be achieved by the DPU at a power consumption
between 7.5W and 40W, depending on the workload
and processing speed.
The NVidia Jetson series of embedded computers is al-
so used for onboard ML inference and training, such as
the Jetson Xavier NX deployed on the Sonate-2 satelli-
te [9] or the Jetson TX2i deployed on NewSat-satellites
by Satellogic and Palantir Technologies5. Additionally,
Jetsons in space-capable housings are being distrubu-
ted by Aitech Systems6, however the Nvidia Jetson
modules themselves are not certified for the space en-
vironment and require radiation shielding.
SkyServe inc provides onboard data processing ser-
vices for cloud segmentation, haze detection and selec-
tion of high-priority images utilizing the Unibap iX5
processing unit7 built around the same Intel Movidius
Myriad X VPU also deployed by Ubotica Technolo-
gies [10].

3. PAYLOAD ARCHITECTURE

This section details first the hardware architecture of
the proposed processing unit, followed by the software
architecture.

3.1. Hardware Architecture

The novel processing unit described in this paper - the
Smart Processing and Power Module (SPPM) - con-
sists of two stacked boards with the 70× 70mm UNI-
SEC form factor8, connected via a 160-pin application
interface connector. The development of the individual
board architecture has been described in [11], with the

5https://blog.palantir.com/edge-ai-in-space-93d793433a1e
(last accessed 2025/08/25)

6https://aitechsystems.com/space-products/space-gpgpu/
(last accessed 2025/09/07)

7https://unibap.com/solutions/hardware/ix5/ (last acces-
sed 2025/09/07)

8http://unisec-europe.eu/ (last accessed 2025/06/20)

corresponding power supply being described in [12].
Each board contains a Microchip Technology PolarFi-
re MPFS250T FPGA SoC, incorporating a quad-core
RISC-V processor, as well as a reconfigurable FPGA.
All products in the PolarFire SoC FPGA series contain
the same Microprocessor and only differ in the size of
the available LEs in the FPGA, counting between 23 k
and 461 k LEs. The chosen MPFS250T contains 250 k
LEs, being identical to the processor in the PolarFire
Icicle Kit development board.
The maximum thickness of the SPPM stack is 27mm.
Figure 1 shows the stacked processing unit. To achie-
ve modularity and fault isolation, each processing
element is assigned a specific subset of functions. In
this configuration, one board (SPPM1) provides basic
functionality found also in traditional EO-satellites
without onboard image processing, such as commu-
nication with the satellite bus, camera control and
image storage. The processor on the second board
(SPPM2) performs the onboard image analysis by
synthesizing an ML accelerator in its FPGA. The rea-
son for distributing these functionalities over two SoCs
is to separate the more experimental image analysis
step from the regular camera operation. Additionally,
this way the FPGA-based ML accelerator in SPPM2
can be reconfigured in-orbit without interrupting the
regular camera use.

Fig. 1. Stacked Smart Processing and Power Module
(SPPM). Both boards contain identical components
and architectures.

To connect SPPM1 to the satellite bus and to attach
instruments such as cameras, RS-485 and UART com-
munication interfaces are available. Due to the flexi-
bility of the FPGA fabric, additional interfaces re-
quired by the desired payload can be synthesized as
needed. The maximum power consumption of a single
MPFS250T is specified as 12W9, with the expected
power consumption for SPPM1 being about 3W for
general functionality and below 5W for SPPM2 du-
ring image processing. The input voltage can range
from 5V to 12V and will be fixed at 5V for the inte-
gration into the UWE-5 satellite10 in development at
University of Würzburg and BTU Cottbus.

9https://www.sundancedsp.com/in-design/polarberry-fpg
a-module-with-risc-processors/ (last accessed 2025/09/03)

10https://www.informatik.uni-wuerzburg.de/uwe5 (last
accessed 2025/09/05)
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The MVP Aerospace KissCAM series11 of small
satellite cameras is being considered for validati-
on. The KissCAM Pro offers a resolution of up to
1920× 1080pixel with an M12 lens mount at a power
consumption below 500mW. Assuming an orbital
height of 600 km and a telephoto lens with an opening
angle of 22◦, a ground sample distance of about
216m can be achieved. This resolution is sufficient
for testing cloud segmentation aboard the satellite on
state- and country-scale or to detect features such as
glaciers.

3.2. Software Architecture

The MSS of the PolarFire SoC allows the deploy-
ment of Linux, bare-metal C-code and/or RTOS-
applications on the same chip, featuring an E51
monitoring core and four U54 application cores.
Figure 2 shows the previously mentioned distribution
of tasks between SPPM1 and SPPM2. To execute
the respective functionalities in the MSS of both
SPPM1 and SPPM2, the choice between using Li-
nux, bare-metal C-code or an RTOS like FreeRTOS
had to be made. Since the UWE-5 Satellite utilizes
the KronOS middleware developed by the ESSEO
working group at the University of Würzburg, it
was decided to port KronOS to the PolarFire SOC.
KronOS is a fault-resistant and real-time capable
communications middleware utilizing the COMPASS
protocol already deployed on the preceding UWE-3
and UWE-4 satellites [13]. It provides a streamlined
API for onboard communication and process mana-
gement, building atop the POSIX interface. KronOS
allows easy cross-compilation and the adaptation of
new HALs for different processors and compilers.
The layered, HAL-based architecture of KronOS can
be seen in Figure 3. Using POSIX allows embedded
targets using the POSIX compatibility layer of Fre-
eRTOS as well as any POSIX compliant operating
system to join the KronOS network.
The four application cores of the MSS can either run
Linux on all cores, or only execute Linux on one to
three cores and use the remaining core(s) in different
ways. These can either run an RTOS such as FreeR-
TOS or execute Bare Metal C-code12. Linux can utilize
multiple cores with symmetric multiprocessing, while
an RTOS can only be run as asymmetric multipro-
cessing. Communication between cores running Linux,
RTOS and Bare Metal is possible using the Remote
Processor Messaging protocol13. Since the EO appli-
cations running on the SPPM do not require predic-
table latency behaviour, no requirement for real-time
capability exists. Should the requirements change at
a later stage of the project, one of the cores running

11https://mvpaerospace.com/products/ (last accessed
2025/08/26)

12https://github.com/polarfire-soc/polarfire-soc-documenta
tion/blob/master/applications-and-demos/asymmetric-multi
processing/amp.md (last accessed 2025/08/26)

13https://github.com/polarfire-soc/polarfire-soc-documenta
tion/blob/master/applications-and-demos/asymmetric-multi
processing/rpmsg.md (last accessed 2025/08/26)

Linux can be changed to run different software. As
shown in Figure 2, Linux will distribute tasks over all
four cores to communicate with the satellite bus and
the OBC, control the camera and perform data mana-
gement. Additionally, if the SPPM is commanded to
perform image analysis, SPPM1 will trigger SPPM2 to
perform the analysis, after which SPPM1 will process
the result. Depending on mission priorities, SPPM1
can then decide to downlink or discard an image or to
downlink only sections containing geolocated points of
interest.
To use Linux, a POSIX compliant implementation of
the KronOS HAL was written, allowing the use of se-
rial communication devices, file transfer and storage
and the internal clock. This is not only useful onboard
SPPM1, but allows any POSIX compliant hosts to join
the KronOS network.
Commanding of the SPPM will be handled by the
OBC, communicating via KronOS. KronOS imple-
ments a Command API which allows execution of
commands on remote targets, identified through a
unique ID. Routing through multiple subsystems,
e.g. uplink by a telecommunications payload, rou-
ting through the OBC and reception by the camera
subsystem is all handled by KronOS internally. Once
received by the target system, the Command API
forwards the command to an application specific
service, in this case the Camera API. The Camera
API on SPPM1 will handle the incoming command,
and e.g. trigger the camera to take a picture or start
the post-processing in coordination with SPPM2.
Coordination between SPPM1 and SPPM2 will also
be done through KronOS allowing other participants
like ground stations to monitor or intervene, whereas
the image data will be exchanged using a faster
Serializer/Deserializer pair between both FPGAs.
The described command chain for the camera has al-
ready been tested between a ground station computer
and the SPPM1 attached via a serial connection and
worked as expected on development boards acquired
from Microchip. This test setup will be integrated in
a bench-top test with the OBC and additional com-
ponents pending their readiness.
To change the architecture of the ML accelerator syn-
thesized in SPPM2, bitstreams containing different
architectures can be stored in non-volatile memory
aboard SPPM2 either at launch or throughout the
mission. This way, accelerators better suited for the
respective mission priorities can be deployed, opti-
mizing parameters such as inference time or power
consumption, without affecting the regular camera
operation and acquisition of images. Trained ML
models for various applications can also be stored in
the non-volatile memory and uploaded throughout the
mission, before being loaded by the ML accelerator.

4. ML INFERENCE ARCHITECTURE

To perform inference, an ML accelerator must be syn-
thesized in the FPGA of SPPM2. Microchip Technolo-
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Fig. 2. High-Level architecture and dataflow inside the SPPM. In the Microprocessor Subsystems of both SPPMs, Linux
performs multiprocessing on all cores.

Fig. 3. Layered software architecture deployed on the
SPPM. The application utilizes standardized com-
munication interfaces provided by KronOS, which
in turn uses the POSIX-interface to build upon Fre-
eRTOS or Linux.

gies provides the VectorBlox Accelerator SDK14 which
will be used for image processing in a first step. The
VectorBlox accelerator is a matrix processor suppor-
ting 8-bit integer (INT8) operations. The accelerator is
available in three different sizes and performance clas-
ses: V250, V500 and V1000. The architecture consists
of a parallel processor, called MXP Vector Processor,
that executes data-parallel operations on vectors of da-
ta, as well as a CNN Accelerator containing a 2D-array
of multiply-accumulate units in order to leverage the
high level of parallelism in convolutional neural net-
works. The performance classes influence the size of
the respective processing units, i.e. the the width of
the vector processor and the side-lengths of the CNN
Accelerator array. The expected inference performance
levels of the VectorBlox accelerator will be discussed in
Section 5. As mentioned in Section 3.2, in the future
further accelerators will be synthesized, enabling to
choose accelerators optimized for latency, power con-

14https://www.microchip.com/en-us/products/fpgas-and
-plds/fpga-and-soc-design-tools/vectorblox (last accessed
2025/06/20)

Pytorch
(32-bit)

ONNX
(32-bit)

Tensorflow Lite
(32-bit)

Quantized
Tensorflow Lite

(8-bit)

VNNX Blob

torch.onnx.export (
model,
(input_tensor,),
output,
input_names,

)

onnx2tf 
-i [onnx-model]
--output_signaturedefs
--output_integer_quantized_tflite

vnnx_compile 
-c [configuration_size] 
-t [quantized_tflite_model] 
-o [output_model]

Fig. 4. Conversion of 32-bit floating point Pytorch Model
to 8-bit integer quantized VNNX using Vectorblox
SDK

sumption or flexibility bsed on current priorities. Ad-
ditionally, parameters such as the input image resolu-
tion can be dynamically adjusted to prioritize either
accuracy or inference time.
To perform inference with trained ML models, these
are required to have the form of binary VNNX blobs,
a datatype created specifically to contain VectorBlox
models. The VectorBlox SDK provides the necessary
toolchain to generate these blobs, which can either be
executed in a simulator on the development worksta-
tion or be deployed directly to VectorBlox hardware.
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TAB 1. Technical specifications and peak performance for select inference processors

System Operations Per Second System information Power
VectorBlox V250 78 int8 GOPs 154MHz, 104 Math Blocks <5W
VectorBlox V500 152 int8 GOPs 148MHz, 204 Math Blocks <5W
VectorBlox V1000 284 int8 GOPs 138MHz, 332 math blocks <5W
Raspberry Pi4 [14] 6.9 int GOPs / 3.3 float GOPs 1GB - 8GB RAM <15W
Raspberry Pi5 [15] 14.6 int GOPs / 11.3float GOPs 2GB - 16GB RAM <25W
Jetson TX2i [16] 1.33 FP16 TFLOPS 8GB RAM 10− 20W
Jetson Xavier NX [17] 21 TOPS 8GB RAM 10− 20W
Jetson Orin NX16 [18] 157 TOPS 16GB RAM 10− 40W
Myriad X VPU [19] >1TOPS inference 2.5W

According to the VectorBlox Programmer’s Guide15,
four conversion paths are supported, all of which uti-
lize TensorFlow Lite (TFLite) as the intermediate for-
mat.
A graph showing out conversion pipeline can be seen
in figure 4. In our experiments, the model was trained
in Pytorch with 32-bit quantization, after which it
was exported to ONNX (32-bit quantization) using
the torch.onnx16 module. The ONNX model was then
converted to TFLite (32-bit quantization) via the
onnx2tf17 tool. Since the vnnx_compile utility of
Vectorblox SDK requires an INT8-quantized TFLite
model as input, the network was quantized to produce
an 8-bit integer TFLite model. Finally, the quantized
model was compiled into VNNX blobs, whereby each
possible CoreVectorBlox configuration (V250 / V500
/ V1000) requires a specific blob.
In order to be executed in the PolarFire accelerator,
VNNX blobs compiled for the present configuration
must be stored in the non-volatile menory of the
SPPM. A device tree overlay is created to add a
VectorBlox instance, enabling the Linux kernel to
recognize the hardware and expose it as a device node.
The VectorBlox SDK provides APIs for interacting
with VectorBlox IP, enabling various tasks, such as
allocating Direct Memory Access (DMA) buffers,
initializing the VectorBlox IP Core, and running the
model. Using these APIs, a script is developed to
run in Linux on the MSS. The script initializes the
VectorBlox instance and triggers the loading of the
VNNX blob into the accelerator. It also ensures that
input images for the network are placed in the correct
address in the DDR memory buffer. Through DMA,
the Accelerator retrieves the input images from these
buffers, performs inference, and places the output
image or classification vector at a predefined DDR
address buffer without further interaction with the
MSS.

15https://github.com/Microchip-Vectorblox/VectorBlox
-SDK/blob/master/docs/VectorBloxPG.pdf (last accessed
2025/09/06)

16https://docs.pytorch.org/docs/stable/onnx.html (last
accessed 2025/09/06)

17https://github.com/PINTO0309/onnx2tf (last accessed
2025/09/06)

5. DEPLOYMENT OF CLOUD SEGMENTATION
MODEL

The expected ML inference performance, as well as
the accompanying power consumption, depends on the
specific architecture of the ML accelerator synthesized
in the FPGA. As mentioned in Section 4, at first we
only assume the implementation of Microchip’s own
VectorBlox accelerator. The Peak performance of the
VectorBlox accelerators according to the HB0919 Co-
reVectorBlox Handbook Revision 2.0 can be seen in
table 1 and have also been analyzed in [20]. In [21],
the implementation and testing of a custom reconfigu-
rable deep learning accelerator in the PolarFire SOC
is described.
Table 1 also shows a selection of processors and com-
puters used for inference and onboard processing in
spacecraft. Here, the column denoting the operations
per second corresponds to a theoretical, optimal case
without any bottlenecks and with all computing units
at maximum utilization. In addition, considering both
regular compute units and specific SIMD-extensions to
the CPU - such as NEON for ARM processors - can
be difficult and individual multiply-accumulate opera-
tions are sometimes counted as one operation and so-
metimes as two separate operations. Thus, these theo-
retical values serve only to give a rough overview over
the expected performance of a processor or system re-
lative to the others.
In order to compare these theoretical performance va-
lues with experimental data, preliminary experiments
for the real-world use-case of cloud segmentation in
satellite images were performed. To this end, a U-Net
like convolutional neural network was built in Pytorch,
taking in images in the red-, blue-, green-, and near-
infrared bands with a single-band cloud mask as the
output. The network consists of four encoding layers
that reduce the image resolution, while increasing the
number of feature maps, and four decoding layers,
that in turn increase the resolution and decrease the
number of feature maps, until a single image with an
identical resolution to the input image resolution is
returned. Table 2 shows the necessary Giga-Floating
point operations necessary to infer a single cloud mask
with 192 × 192 or 384 × 384 pixel resolution, accor-
ding to the fvcore- and THOP-libraries. Discrepancies
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TAB 2. Necessary floating point operations for inference
with the deployed cloud segmentation model, ac-
cording to python fvcore and THOP libraries

Library Image Resolution GFLOPs
fvcore 192× 192 6.884
fvcore 384× 384 27.538
THOP 192× 192 7.813
THOP 384× 384 31.251

TAB 3. Average inference times and power consumption
over 9201 inferences for resolution 192×192 on the
38-cloud dataset [22]. Idle power draw of Raspber-
ry Pi 4 is 2.3W, Pi 5 2.8W, PolarFire Icicle Kit
with Linux running and VectorBlox synthesized
in the MPFS250T 4.6W, Jetson Orin NX 16GB
8.3W. The Nvidia Jetson was set to 10W mode.
Deployment on the Microchip Icicle kit develop-
ment board is still work in progress.

System Quantization Inference Power
R Pi4 Float32 0.64 s 6.3W
R Pi4 Int8 2.89 s 5.2W
R Pi5 Float32 0.40 s 10.2W
R Pi5 Int8 0.84 s 9.6W
Orin NX16 Float32 CPU 0.32 s 9.6W
Orin NX16 INT8 CPU 1.16 s 9.8W
Icicle Kit INT8

between the results of both libraries are due to their
respective layer support and method of counting, ho-
wever the difference between fvcore and THOP is only
about 12%.
Table 3 shows the measured average inference time
and power consumption during inference for different
combinations of system and quantization settings. On
the Raspberry Pi 4 and 5, as well as the Nvidia Jetson
Orin NX 16GB, the standard Linux distribution provi-
ded by the manufacturer for the specific hardware was
installed. Inference was performed using the regular
Pytorch-package, with inference being only performed
in the CPU of the Nvidia Jetson.
When deploying the model to the VectorBlox accelera-
tor, a limit of 32MB for the size of .vnnx-models was
encountered. This is due to the reserved portion in the
DDR memory in the configuration for the Icicle kit. At
the same time, the resulting .vnnx file size depends on
the target architecture, with a blob for the V500 archi-
tecture being considerably larger than for the V1000
architecture. The .vnnx-file for the cloud segmentation
model is about 50MB in size for the V500 architecture
and about 7MB for the V1000 architecture, but the de-
ployment of the V1000 accelerator on the development
board is still ongoing.
The raspberry Pi 4 with its Cortex A72 processor, The
Pi 5 with its Cortex A76 and the Jetson Orin NX16
with the Cortex A78 are all part of the same processor
family, with the A72 being the least powerful and the
A78 being the most powerful. Thus, their performance

relative to each other seems reasonable. The slower in-
ference for 8-bit integer quantization in the A78 of the
Jetson Orin can be traced back to the processor being
set to the 10W power mode, disabling some processor
cores and limiting clock speed. With all cores active
and drawing close to 18W of power, the inference ti-
me for 8-bit integer quantization in the A78 drops to
about 0.42 s.
In general, it can be seen that contrary to expectati-
ons the inference time for 8-bit integer quantization is
generally longer than for 32-bit floating point operati-
ons, even though the processors are generally capable
of more integer operations per second than floating
point operations. This is caused by the specific imple-
mentation of the quantized operations in Pytorch and
the target of future research.

6. OUTLOOK

As a next step, we plan to finalize the deployment of all
three VectorBlox accelerators in the Icicle kit, followed
by the execution of the cloud segmentation model in
the accelerator.
Next, we plan to set up tests resembling the final archi-
tecture of the payload processing unit in the satellite.
This will consist of a camera connected to a PolarFi-
re development board simulating SPPM1, while this
board is also connected to the satellite’s OBC and
another PolarFire development board, standing in for
SPPM2. This way, the complete pipeline from tasking
the image acquisition over the image analysis using
ML and the evaluation of the results can be tested in
an environment close to final deployment in the satel-
lite. Additionally, the networking functionality of the
KronOS middleware can be further tested.
Additionally, we plan to look into benchmarking the
ML inference capability of VectorBlox, as well as other
inference accelerator designs on ML-models of different
architectures and performance classes.
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