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Abstract
Fibre-reinforced thermoplastics are increasingly replacing metal alloys in aerospace due to their low weight, high specific
strength and possibility to be welded. However, traditional development processes for joining technologies are experimen-
tally based hence resource-intensive. This work introduces a novel thermally based quality factor, the Sänger factor, to
predict the mechanical joint strength of resistance-welded thermoplastic composites using simulated temperature data. The
approach leverages a meso-scale model, the newly modified mosaic model (M3) to capture heterogeneous heating patterns
and integrates four temperature characteristics: degree of melting, degradation, homogeneity, and crystallisation potential.
The model was validated experimentally using single lap shear tests and evaluated across various process configurations.
Results demonstrate a strong correlation between thermal and mechanical properties, with prediction accuracies exceed-
ing 90 % for a ±10 % error margin and 75 % for the ±2σ confidence interval. Thereby, the Sänger factor offers a digital,
resource-efficient method to optimise thermoplastic joining processes and reduce experimental effort.
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1. INTRODUCTION

1.1. Background

Fibre composite materials, with their low weight and high
specific strength, are increasingly replacing conventional
metal alloys to reduce aircraft weight [1, p. 33].
Currently, thermosetting matrix materials dominate
aerospace applications despite their ecological draw-
backs, such as energy-intensive storage and autoclave
curing processes, high resource consumption for auxiliary
materials, and difficulties in recycling components [2, 3].
Additionally, time-consuming manual steps have a negative
impact as well as slow reaction times [4,5].
Thermoplastics are emerging as a promising material in
aerospace due to their advantages over thermosetting
processes. The elimination of auxiliary materials and
slow curing processes makes thermoplastic welding faster
and more cost-effective, allowing for a high degree of
automation [6–8]. In addition, dust- and chip-free welding
is particularly interesting as it can streamline the currently
serial production chain, enabling parallelisation through
pre-assembled sub-components [3,9].
Thermoplastics have thus become a key matrix system in fi-
bre composites, enabling the exploration of new joining tech-
nologies [6–8,10,11].

1.2. State of the Art

The standard approach for developing new joining pro-
cesses involves the production of experimental samples
followed by mechanical tests [6, 11, 12] following a test
pyramid scheme [13]. This requires numerous sequential
tests, making it resource-intensive in terms of time, cost,
and materials [14]. Alternative materials and optimisation
potentials are often overlooked, and scalability issues arise
when increasing the joint length [15,16].

Aerospace certification is based on empirical test results,
providing rigid process windows that are difficult to adapt
to changes such as material modifications [17]. Further-
more, current development processes lack a comprehen-
sive virtual process chain, prompting a shift towards digi-
tal aircraft development to reduce time, material use, costs,
and risks [18–22]. This trend is supported by the European
Union Aviation Safety Agency (EASA), which has outlined
requirements for modelling and simulation in future certifi-
cation processes [23].
Numerical models and process simulations are increasingly
used in developing new joining technologies for thermoplas-
tic composites, particularly for induction, ultrasonic, and re-
sistance welding [6, 8, 11, 24]. Recent advancements in fi-
nite element modelling (FEM) have enabled process sim-
ulations for induction and ultrasonic welding [25–29]. Re-
sistance welding has seen previous numerical approaches,
with various studies focussing on temperature distribution
and optimisation of process parameters [14,30–37].
Quality prediction based on process simulations is increas-
ingly emphasised, with some studies identifying optimal
process windows through FEM simulations [14, 32, 38, 39].
However, dedicated quality prediction efforts are primarily
seen in ultrasonic welding [40–45].

1.3. Motivation

In contrast to the traditional form-fit joining of conventional
metallic aircraft structures, thermoplastic welding creates a
material bond significantly influenced by the manufacturing
process [46]. To infer the quality of the joint produced,
the process must be comprehensively understood and
analysed [47, pp. 65]. Previous studies have established
that the quality and strength of the joint are directly related
to the thermal history in the joining zone [32]. Additionally, a
correlation has been found between process temperatures
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and the resulting joint area, to which mechanical strength is
proportional [37].
Currently, the development of process simulations and pre-
dictive models occurs separately [43, 48]. This work ad-
dresses the identified gap between process simulation and
quality prediction based on the investigation of the temper-
ature in the joining zone as a key characteristic. It thus con-
tributes to shorter development times with reduced resource
consumption while simultaneously increasing the degree of
digitalisation in the research of new joining technologies. In
addition, it offers easy applicability for numerous welding
processes of thermoplastic fibre composites.

2. METHODOLOGY

2.1. Process and Materials

As subject of investigation, this work focuses on electrical
resistance welding, which utilises the physical phenomenon
of heating a conductive element placed between the joining
partners (Figure 1).

FIG 1. Schematic Setup

When a direct current is applied and the supplied energy
exceeds thermal losses to the surroundings, the tempera-
ture of the weld conductor and adjacent layers rises until the
melting range of the thermoplastic matrix is reached. Once
sufficient surface melting is achieved, the current is discon-
tinued, and the joint cools under an appropriate consolida-
tion pressure, ensuring good contact and adequate molec-
ular diffusion in the joining zone.
Table 1 lists the four investigation groups which are defined
in order to assess the later introduced quality prediction:
the baseline configuration (I) and its up-scaled process (II)
as well as transferability to different pressure piece materi-
als (III) and matrix systems (IV).

TAB 1. Overview of Investigation Groups

Group Matrix Weaving Pressure Piece Joint Area
[mm x mm]

I PPS 5HS Invar 36 200 x 40
II PPS 5HS Invar 36 600 x 38
III PPS 5HS Ceramics 200 x 40
IV LMPAEK UD* Ceramics 200 x 25

*Weld Conductor: Toray CETEX® TC1225, T300JB, 277 gsm

Adherends consist of pre-consolidated, five-harness
satin (5HS) polyphenylenesulfide (CF/PPS) woven
prepregs (Toray CETEX® TC1100, T300JB, 280 gsm)
in five layer configuration ([±45, 0/90, ±45, 0/90, ±45]).
Additionally, experiments with twelve unidirectional lay-
ers ([45, 0, – 45, 0, 90, 0]S) low-melt polyaryletherketone

(CF/LMPAEK) manufactured via automated fibre place-
ment (AFP) are carried out. All weld conductors are
single-layer 5HS woven fabrics ([0/90]) of the respec-
tive adherend matrix system. Between current carrying
weld conductor and adherends, an electrically isolating
EC5 glass fibre fabric (2/2 twill) is inserted on either side.
Consolidation pressure is applied by pressure pieces either
from VDM® Invar 36 with integrated heating cartridges HS-
86/100/230 or KTherm® AS700 ceramics without heating.
Within the groups, the five key performance parameters
pressure piece temperature, consolidation pressure, heat-
ing voltage, heating duration and holding voltage are varied
to establish in total 29 process variants.

2.2. Modelling

Literature on welding process modelling of thermoplastic
composites predominantly employs macroscopic ap-
proaches with homogenised layers [49, 50]. However,
these methods sacrifice critical microscopic physical in-
teractions, thereby predictive accuracy for computational
efficiency [49–51].
Thermal history and temperature distribution critically influ-
ence joint quality, with inhomogeneous heating caused by
the composite’s heterogeneous structure [32,37,52–55].
Microscopic and thermographic images reveal hetero-
geneous heating patterns in carbon fibre weld conduc-
tors due to anisotropic electrical resistance (Figure 2,
top/middle), which cannot be described by macroscopic
approaches (Figure 2, bottom).

FIG 2. Microscopic image (top), thermographic image (mid-
dle, [56]) and simulated temperatures of a macroscopi-
cally modelled weld conductor (bottom)

To capture these fundamental heating effects, a meso-scale
model – resolving at least the roving level – is essential.
The mosaic model by Ishikawa [57–60] was originally devel-
oped for purely mechanical behaviour of textile fabrics, but
balances accuracy and computational efficiency, resolving
fibre-level details while maintaining manageable complexity.
For thermal-electric modelling, the mosaic model is adapted
to include contact surfaces between elements, classified as
interplanar (IP), interfilament (IF), and resin wedge (HK) with
assigned thermal (τ) and electrical (ε) contact coefficients
to simulate heat and current flow; fibre continuity is ensured
by loss-free node coupling. Thereby, the modified mosaic
model (M3, Figure 3) is introduced which is implemented in
Ansys 2020 R1 via custom and parametrised APDL scripts
which can easily be adjusted to different fibre architectures.
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interplanar plane (IP-E)
interplanar undulation (IP-O)

interfilament (IF)
resin wedge (HK)

Couplings for fibre continuity

FIG 3. Modified Mosaic Model (M3)

2.3. Mechanical Characteristics

The most common method for characterising the strength of
resistance-welded joints is the single lap shear test (SLS),
which yields the lap shear strength (LSS), denoted
as τw [24]. It can be compared to the base material
strength, τ∞, representing the maximum possible joint
strength. This reference value is determined using fully
consolidated plates manufactured in a hot press and tested
with the same lap shear method [61].
The mechanical weld factor, ΘM , is calculated as the ratio of
these two values according to

(1) FMech(τ) : ΘM =
τw

τ∞

, where ΘM ∈ [0,1] .

This ratio is widely used in the literature to assess the de-
gree of consolidation [16, 35, 61] and will also be employed
in this work to evaluate the mechanical quality of the joint.
An optimal weld strength is indicated by ΘM = 1.
For this work, all mechanical values are determined accord-
ing to DIN EN 2243-1 [62] at room temperature (23 °C) with
a Zwick BZ1-MM14780.ZW01 tensile testing machine. Only
tested specimens with an interlaminar failure mode [63] as
well as a relative standard deviation of the mean value of
less than ten percent are considered.

2.4. Hypothesis on Mechanical-Thermal Analogy

Numerous studies have established a direct correlation
between mechanical joint strength and the thermal history
within the joining zone [15, 32, 52, 53], with joint quality
proportional to process temperatures and the generated
bonding area [37]. This work hypothesises the existence
of a thermally based quality factor, FSänger, derived solely
from the temperature state at the end of the heating or
consolidation phase. This factor is posited to be equivalent
to the mechanical weld factor, FMech, such that

(2) FSänger(ϑ)≡ FMech(τ), where FSänger ∈ [0,1] .

Proving this hypothesis would enable the characterisation
and prediction of mechanical joint strength using only simu-
lated temperature data, eliminating the need for further me-
chanical tests.

2.5. Mathematical Approach

Machine learning has demonstrated effectiveness in solving
material and engineering challenges [64], including quality
prediction in ultrasonic welding of thermoplastic compos-
ites [41, 43–45]. This work adapts supervised learning
principles, focusing on manual parameter optimisation.
The goal is to map input temperature characteristics to the
continuous output of the mechanical weld factor, FMech(τ),

using a linear regression model which assumes a hypothe-
sis function of the form

(3) hθ (x) = θ0 +θ1 · x1 + . . .+θn · xn

where θi are weighting factors and xi are known regressors.
θ0 is a random unknown noise of additional hidden vari-
ables. For this term, the convention should be introduced
that x0 = 1 always applies, whereby (3) can be rewritten as

(4) hθ (x) = ⟨θ |x⟩=
n

∑
i=0

θi · xi.

2.6. Temperature Characteristics

The regressors, xi, are selected to represent the tempera-
ture state’s influence on joint quality. Four key characteris-
tics are identified.

2.6.1. Degree of Melting Ψm

The degree of melting, Ψm, indicates whether the required
melting temperature, Tm, is reached during heating. Tem-
peratures below Tm prevent bonding, as confirmed by [15,
39, 52]. This temperature level also influences subsequent
consolidation and crystallisation defining the lower bound of
the optimal process window [32,34,65].
“Unlike metals, [...] semicrystalline polymers melt over a
relatively broad range.” [66, p. 11] This behaviour arises
due to the inhomogeneous distribution of amorphous and
crystalline regions, which begin to melt at different times
around the crystalline melting temperature, Tm [67, pp. 86].
Consequently, a continuous method – rather than a dis-
crete, melting-point-based approach – is selected to model
the melting behaviour. Experimentally, this is typically
characterised using differential scanning calorimetry (DSC)
measurements [68, pp. 160].
Thereby, the specific enthalpy of fusion ∆hm is represented
by the area between the DSC curve and the baseline be-
tween onset and endset temperature points Ton and Tend ,
respectively, i. e. the integral

(5) ∆hm =

tend∫
ton

[(
dq
dt

)
specimen

−
(

dq
dt

)
baseline

]
dt,

with the different points of time ton and tend , respectively, ex-
hibiting onset and endset temperature.
For incomplete melting up to a temperature ϑ between
Ton and Tend , the melting enthalpy expended up to that
point, ∆hm(ϑ), is calculated using the integral function

(6) ∆hm(ϑ) =

tϑ∫
ton

[(
dq
dt

)
specimen

−
(

dq
dt

)
baseline

]
dt.

The experimental degree of melting, ΨDSC
m , for incomplete

melting between the onset and endset temperatures, Ton and
Tend , is determined by the ratio of the heat flow expended up
to that point to the total melting enthalpy, as per

(7) Ψ
DSC
m (ϑ) =

∆hm(ϑ)

∆hm
for Ton ≤ ϑ ≤ Tend .

For simplicity, it is assumed that no melting occurs below
the onset temperature, Ton (Ψm = 0), and that the laminate
is fully molten above the endset temperature, Tend (Ψm = 1).
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Consequently, the degree of melting, Ψm, is defined as

(8) Ψm(ϑ) =


0 for ϑ < Ton,

ΨDSC
m (ϑ) for Ton ≤ ϑ ≤ Tend ,

1 for ϑ > Tend .

Figure 4 shows schematically the DSC melting curve (exem-
plary for Cetex® TC1110 CF/PPS laminate) with the hatched
area representing the enthalpy of fusion ∆hm (top) and the
corresponding degree of melting Ψm (bottom) according to
Equation 8.

TendTend,e

Tpeak

Ton Ton,e

∆hm

exo

dq d t

230 240 250 260 270 280 290 300
0,0

0,2

0,4

0,6

0,8

1,0

Ton

Tpeak

Tend

Temperature ϑ [°C]

Ψ
m

FIG 4. Schematic DSC melting curve (heat flow dq
dt , top) and

corresponding Degree of Melting Ψm (bottom)

2.6.2. Degree of Degradation Ψd

Process temperatures must not exceed the degradation
temperature, Td , during heating, as surpassing this thresh-
old irreversibly damages polymer bonds and reduces
mechanical properties of the polymer [69, 70, pp. 68,18] as
well as of the joint [35,65].
Similar to [65], discrete modelling approach is adopted to
distinguish temperatures above and below the degradation
temperature, Td . Therefore, the degradation temperature is
determined by thermogravimetric analysis (TGA) and is de-
rived as the temperature where the inflection point of the
remaining mass fraction curve occurs. The degradation de-
gree, Ψd , is defined in its complementary form as per

(9) Ψd(ϑ) =

{
1 for ϑ < Td ,

0 for ϑ ≥ Td ,

since maximum degradation corresponds to minimal
strength in quality assessment.
Figure 5 shows schematically the TGA remaining mass frac-
tion curve (exemplary for Cetex® TC1110 CF/PPS laminate,
top) and the corresponding degree of degradation Ψd (bot-
tom) according to Equation 9.

2.6.3. Homogeneity of Temperature Distribution Ψh

Temperature distribution across the joining area is often in-
homogeneous due to material, process, and external fac-
tors, potentially creating both molten and unmelted regions.
Such gradients increase the risk of voids and air inclusions,
which degrade mechanical properties by altering fibre vol-
ume content and promoting crack initiation [71, pp. 1]. Liter-
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FIG 5. Schematic TGA Degradation Curve (remaining mass
fraction, top) and corresponding Degree of Degrada-
tion Ψd (bottom)

ature confirms that uneven temperature distribution reduces
joint quality, with edge areas often exhibiting poorer bonding
and increased porosity [15,16,52,53,72,73].
There are no preliminary studies in the literature on quanti-
fying the homogeneity of temperature distributions. Instead,
in automated image processing, an image is considered ho-
mogeneous if every pixel has the same colour, and homo-
geneity is quantified using the standard deviation, s, of each
pixel’s greyscale value relative to the mean greyscale value
of the image [74]. Applied to the distribution of simulated
element temperatures, ϑi, this yields

(10) s(ϑi) =

√
1

n−1

n

∑
i=1

(
ϑi −∆ϑ

)2
.

with the arithmetic mean value of the element tempera-
tures ϑi normalised to the peak melting temperature, Tpeak,
determined from DSC measurements, following

(11) ∆ϑ =
1
n

n

∑
i=1

(
ϑi −Tpeak

)
,

Since the standard deviation can be of any value, but the
degree of homogeneity shall obey Ψh ∈ [0,1], a standardisa-
tion is introduced analogous to [75], which sets the standard
deviation in relation to the mean temperature as

(12) Ψh(ϑ) =

{
1− s(∆ϑi)

∆ϑ
for s(∆ϑi) < ∆ϑ ,

0 for s(∆ϑi) ≥ ∆ϑ .

2.6.4. Crystallisation Potential Ψc

Unlike previous thermal factors, the crystallisation de-
gree does not only assess a certain point in time but
characterises the cooling behaviour during consolidation,
directly impacting joint quality [76–78]. High tempera-
ture gradients influence matrix crystallisation, with slower
cooling rates increasing crystallinity and enhancing me-
chanical properties, such as elastic modulus and tensile
strength [67, 79, pp. 291,86]. Numerical studies on re-
sistance welding and consolidation processes frequently
incorporate crystallisation behaviour [30,31,80–82].
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Absolute crystallinity, χa, reflects the extent of crystalline re-
gions, but consistently remains below the maximum possi-
ble crystallinity levels of about 50 – 65 % [83], which does
not align with the specified value range for the novel qual-
ity factor in Equation 2 as Ψc ∈ [0,1]. By contrast, relative
crystallinity, χr, describes the progression of crystallisation
relative to the final state and ranges from 0 to 1, but does
not reflect the final crystallinity achieved.
To address this, a new metric, crystallisation potential, Ψc,
is defined as the ratio of generated absolute crystallinity to
the initial crystallinity of the base materials following

(13) Ψc =
χ̂a

χ ini
a

.

This assumes that a joint is of high quality if its crystallinity
closely matches that of the original semi-finished products.
The combined absolute crystallinity, χ̂a, accounts for both
molten and unmelted regions using a weighted average

(14) χ̂a = ζχ ·χa +(1−ζχ ) ·χ
ini
a ,

where ζχ is the ratio of molten to unmelted areas.
The absolute crystallinity, χa, in molten regions is estimated
using the Modified Nakamura-Ziabicki (MNZ) model, which
can be adapted to absolute crystallinity using [84], reading

(15) χa =
∫

τ

t0
K (T, Ṫ ) ·G (χa)dt,

with the functions G (χa,χ
ini
a ) and K (T, Ṫ ) according to

G (χa,χ
ini
a ) = χa ·n ·

(
1− χa

χ ini
a

)
·
[
− ln

(
1− χa

χ ini
a

)]1− 1
n

,

(16a)

K (T, Ṫ ) = Kmax(Ṫ ) · e
− 4ln2(T−Tmax(Ṫ ))

2

D(Ṫ )2 ,(16b)

comprising the Avrami exponent n as well as the crystalli-
sation kinetic parameters following approach functions with
logarithmic and power-law regressions as per

Kmax(Ṫ ) =C1 +C2 · ln
∣∣Ṫ ∣∣ ,(17a)

Tmax(Ṫ ) =C3 ·
∣∣Ṫ ∣∣C4 ,(17b)

D(Ṫ ) =C5 ·
∣∣Ṫ ∣∣C6 .(17c)

All aforementioned material related constants are deter-
mined via curve fitting of DSC data [85,86].

2.6.5. Edge-Area-Weighting

Experimental results demonstrated that the condition of the
edge regions, particularly due to stress concentrations at the
overlap ends, is characteristic of measurable joint strength,
while load transfer through the central area was secondary.
A correlation was also observed between the width of uncon-
solidated edge regions and the resulting failure loads [87].
Based on these findings, an edge region of width dEdge is
defined along each longitudinal side of the joining zone (Fig-
ure 6).
In turn, all temperature characteristics, Ψi, are quantified
separately for edge, ψi,R, and central, ψi,F , regions and then
combined using weighted addition to emphasise the domi-
nant influence of the edge regions reading

(18) Ψi = ζR ·ψi,R +(1−ζR) ·ψi,F ,

with the weighting factor ζR of the edge area.

Edge

Area

dEdge

xmin xmax

ymax

ymin

b S
E

L

b O
L

x

y

FIG 6. Geometric Distinction between Edge and Central Area

2.7. Formulation of the Sänger Factor

With the introduced temperature characteristics Ψi, the
temperature-dependent quality factor FSänger(ϑ) can finally
be postulated as the so-called Sänger factor ΘS as

(19) FSänger(ϑ) : ΘS = ⟨θ |Ψ⟩=


θ0

θm

θd

θh

θc

 ·


1

Ψm(ϑ)

Ψd(ϑ)

Ψh(ϑ)

Ψc(ϑ)

 ,

with weighting factors θi satisfying

(20)
n

∑
i=0

θi = 1.

3. RESULTS AND DISCUSSION

3.1. Model Quality Metrics

The optimal parameters, θ̂ , are determined by minimising a
loss function, such as the mean squared error (MSE), Js, or
mean absolute error (MAE), Ja respectively,

(21a) Js(θ) =
1
n

n

∑
i=1

[hθ (x)− y]2 ,

(21b) Ja(θ) =
1
n

n

∑
i=1

|hθ (x)− y| ,

to ensure the closest fit between predicted and actual val-
ues, hθ (x) and y, respectively [88,89].
The mechanical weld factor, ΘM , from section 2.3 comes
with a confidence interval, ∆ΘM , which is defined as the
standard deviation of the mean for a statistical confidence
of p = 95 % (±2σ ). It can be directly compared with the
mean absolute error (MAE) of the Sänger factor, ΘS. Thus,
Equation 21b can be rewritten as

(22) Ja(θ̂) =
1
n

n

∑
i=1

∣∣ΘS(θ̂)−ΘM
∣∣ .

If Ja(θ̂)< ∆ΘM , the simulated Sänger factor, ΘS, lies within
the confidence interval of the experimentally determined
joint strength (Figure 7), indicating that the thermal model
sufficiently accurately represents the mechanical behaviour.
Despite the typical ±2σ confidence interval, the validation
criteria for modelling and simulation, as outlined by [23,90],
specifies an acceptable error margin of ±10 % for derived
quantities which shall be considered for assessment of the
model quality, too.
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ΘS = 0,831
o

FIG 7. Exemplary relation between Mechanical Weld Fac-
tor, ΘM , and the computed Sänger factor, ΘS

Therefore, the relative average error reads

(23) e =

(
ΘS(θ̂)

ΘM
−1

)
·100%.

The results are also classified into binary categories using
a confusion matrix (Table 2), where rows represent actual
values and columns predicted values [91, pp. 201–202].

TAB 2. Generic Confusion Matrix

Prediction
positive negative ∑

Reality positive tp fn tp + fn
negative fp tn fp + tn

∑ tp + fp fn + tn n

In this context, a “true positive” (tp) corresponds to a valid
correlation within the ±10 % margin. Underestimating the
actual strength by more than 10 % results in a “false nega-
tive” ( fn), indicating a conservatively predicted quality, while
overestimating it by more than 10 % yields a “false posi-
tive” ( fp), indicating an optimistically predicted strength. The
“true negative” category remains unassigned but does not
affect subsequent metrics. The populated confusion matrix
for evaluating the thermal model is shown in Table 3.

TAB 3. Confusion Matrix for the Thermal Model

Prediction
positive negative

Reality positive |e| ≤ 10% conservative
negative progressive − / −

From these classes, three key performance metrics can be
derived [88,89, pp. 13, 35–36]:
Accuracy reflects the proportion of correctly classified pre-
dictions (both positive and negative) relative to the total num-
ber of cases following

(24) acc =
tp + tn

tp + fp + tn + fn
.

Precision measures the proportion of true positive predic-
tions among all positive predictions (both true and false)
reading

(25) prec =
tp

tp + fp
.

Sensitivity, also called recall, represents the true positive
rate, indicating the proportion of correctly predicted positive
cases relative to all actual positive cases as

(26) rec =
tp

tp + fn
.

3.2. Validation

The model development process begins with a grid search
approach over the entire data set, a brute-force method
used for hyper parameter optimisation in machine learn-
ing [92,93]. This method systematically explores all possible
combinations within a defined solution space, though it is
computationally intensive and suffers from the “curse of
dimensionality” [94]. To mitigate this, a two-step process
is employed with an initial coarse grid search identifying
a promising region and setting the optimal edge distance
(dEdge =5.716 mm), followed by a finer search within that
region. The latter refines the resolution of ζR and θi to
increments of 0.001, focusing on the range around the
initial optimum. This results in approximately 125 million
configurations, with a typical runtime of 30 seconds. The
mean squared error (MSE) and mean absolute error (MAE)
are used as optimisation criteria.
The so determined optimised parameter set is used to eval-
uate the global correlation between thermal and mechani-
cal properties across the entire dataset. The mean abso-
lute deviation between ΘS and ΘM is approximately 0.2 %,
with individual deviations ranging from −7.6 % to +11.2 %
nearly matching the allowable error margin of ±10 %. The
standard deviation is ±5.0 %, indicating acceptable mea-
surement uncertainty.
Of the 29 analysed datasets, 28 predictions (96.4 %) fall
within the ±10 % error margin, and 23 (79.3 %) lie within
the ±2σ confidence interval (Table 4). The model
demonstrates high accuracy (96.6 %/79.3 %) and preci-
sion (96.6 %/85.2 %), with sensitivity exceeding 90 % for
both validation criteria, ±10 % and ±2σ . Thereby, the
results confirm a strong correlation between thermal and
mechanical properties.

TAB 4. Binary Quality Measure of the Global Correlation

±10 % ±2σ

true positive tp 28 23
false negative fn 0 2
false positive fp 1 4

Accuracy 96,6 % 79,3 %
Precision 96,6 % 85,2 %
Sensitivity 100 % 92,0 %

3.3. Extrapolation

This study initially used an interpolating scenario in the
previous section, confirming the hypothesis of mechanical-
thermal analogy using data within the validation set. The
focus now shifts to evaluating the model’s extrapolative
capability for quality prediction.
For this purpose, k-fold cross-validation is employed since
it mitigates high variances in model accuracy for small
datasets [89,91,95]. The respective dataset is randomly di-
vided into k subsets, with each subset used once as the test
set and the remaining subsets for training. Typically, k = 4
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or 5 subsets are used, and the mean cross-validation error
Ja is computed as per

(27) Ja =
1
k

k

∑
i=1

Ja,i.

Three correlation groups are introduced to evaluate pre-
diction quality, the corresponding computed results can be
found in Table 5 and are discussed in the following.

3.3.1. General Correlation

The general correlation assesses the model’s predictive
quality and universality of the thermal model across all
process configurations. The 29 valid datasets are randomly
shuffled and divided into k = 5 groups each containing
five or six datasets. A 5-fold cross-validation is subse-
quently performed with the mean squared error (MSE) loss
function, Js, to be minimised.
For four of the five iterations, the prediction error is smaller
than the experimental variation range, indicating high accu-
racy. The binary metrics show over 90 % accuracy and pre-
cision for the ±10 % error band and a 100 % recall rate. For
the narrower ±2σ confidence interval, the metrics remain
robust, with an average accuracy and precision of 76% and
83%, respectively, and sensitivity exceeding 93%.

3.3.2. Special Correlation

The specific correlation investigates prediction quality within
subgroups of similar process configurations. The analysis
focuses on Groups I and II, which share nearly identical se-
tups except for joint length.
Group I. The seven valid datasets are randomly divided into
three groups each containing two or three datasets. The
results show significant variations in weighting factors and
prediction deviations. While one iteration achieves excel-
lent accuracy (MAE = 0.006), others exhibit deviations up to
10 % above the experimental variation range which can be
attributed to the limited number of datasets. Binary metrics
indicate 100 % accuracy and precision for the ±10 % error
band, but values drop to around 61 % accuracy and 78 %
precision for the ±2σ confidence interval.
Group II. The 16 valid datasets are divided equally into four
groups. Three iterations show prediction deviations smaller
than the experimental variation range, with one outlier at
20%. Generally, higher accuracy is achieved when baseline
configurations are included in the training set. Binary met-
rics reveal high model quality, with over 90 % accuracy and
precision for the ±10 % error band and 75 % for the ±2σ

confidence interval.
Group I+II. Combining Groups I and II, the 23 valid datasets
are divided into four groups each containing five or six
datasets. All iterations show prediction deviations below
the experimental uncertainty range. Binary metrics indicate
87.5% accuracy for the ±10 % error band and 74 % for the
±2σ confidence interval, with 100% sensitivity. Thereby,
combining Groups I and II improves robustness.

3.3.3. Isobaric Correlation

To eliminate pressure influence, an isobaric correlation is
performed using data at 1.05±0,05 MPa. The 13 valid
datasets are divided into three groups each containing four
or five datasets. The mean deviations of predicted joint
qualities are significantly below the experimental uncertainty
range. Binary metrics show excellent predictive quality with
100% accuracy and precision for the ±10 % error band

and values over 80 % for the ±2σ confidence interval,
confirming improved prediction quality when pressure de-
pendency is minimised. These values align accurately
with findings from [45] on AI-based quality prediction in
ultrasonic welding.

3.4. Application Limits

Plotting the Sänger factors, ΘS, against the mechanical
weld factors, ΘM , reveals a near-horizontal trend line in the
correlation diagrams (Fig. 8). This indicates that ΘS remains
almost constant despite process variations in ΘM , suggest-
ing the model’s limited sensitivity to pressure changes,
which are not fully captured in the pure thermal-electric
simulation. This hypothesis can be validated via Groups III
and IV as their mechanical properties reflect pure pressure
dependency. Their ΘS remains nearly constant across
varying pressures, while ΘM fluctuates significantly.

FIG 8. Correlation Diagram between Mechanical Weld Fac-
tors, ΘM , and Thermal Quality Factors, ΘS for the four
investigation groups within the±10 % error band by [23]

The model’s valid application range is thus limited to ΘM
values around the mean value of ΘM = 0.834 of the in-
vestigated dataset. Below this range, the model tends to
overestimate joint quality, which is undesirable for predictive
accuracy [90]. The overestimation is particularly evident
for ΘM ⪅ 0.75, often due to incomplete welding. To as-
sess this, prematurely terminated welding processes are
analysed which are halted before completion, resulting in
mechanical weld factors, ΘM , ranging from 0.422 to 0.692.
The corresponding calculated Sänger factors, ΘS, show
significant overestimation of joint quality with values ranging
from 0.824 to 0.836, aligning with observations by [43] for
incomplete ultrasonic welding processes.
This discrepancy arises from deviations in the simulated
heating behaviour compared to real tests. While sim-
ulations accurately match measured temperatures for
complete processes, premature termination leads to higher
simulated temperatures, causing overestimation of the
melting degree, ψm, and thus ΘS. Taking an exemplary
test series, its simulated temperature overestimates ψm
as 1.000 instead of the actual 0.404 based on the real
measured temperature, which would accurately predict its
determined ΘM = 0.422.

4. CONCLUSION

4.1. Summary

Currently, the standard approach for developing new joining
processes involves experimental sample production within a
test pyramid, followed by mechanical testing. This sequen-
tial process is resource-intensive in terms of time, cost, and
materials, often neglecting process alternatives and optimi-
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TAB 5. Comparison of predictive quality across extrapolation scenarios

MAE ∆ΘM ±10 % ±2σ

acc prec rec acc prec rec

general 0,038 0,058 93,3 % 93,3 % 100,0 % 76,7 % 83,3 % 93,3 %
special I 0,043 0,053 100,0 % 100,0 % 100,0 % 61,1 % 77,8 % 83,3 %
special II 0,041 0,059 87,5 % 87,5 % 100,0 % 75,0 % 75,0 % 100,0 %
special I+II 0,043 0,057 87,5 % 87,5 % 100,0 % 74,2 % 79,2 % 95,0 %
isobaric 0,035 0,067 100,0 % 100,0 % 100,0 % 83,8 % 83,3 % 100,0 %

sation potential. It also offers limited scalability and future
expandability of the certified process window.
The joining quality produced depends largely on the thermal
history of the joining partners. This can be modelled very
well using modern FEM process simulations, but to date it
has hardly been used to predict the mechanical strength.
The motivation behind this work is to close this gap and
contribute to shorter development times with reduced use
of resources while simultaneously increasing the degree of
digitalisation in the research of new joining technologies.
This work investigated the hypothesis of a mechanical-
thermal analogy to establish a correlation between mea-
surable mechanical properties and a newly introduced
thermally based quality factor, the Sänger factor. A model
was developed to predict joint quality based on the simulated
temperature state in the joining zone utilising four different
temperature characteristics. The predictive capability of
the model was evaluated across various study groups and
joint quality with mechanical welding factors ⪆0.75 was
predicted with good to very good agreement – peaking in
the isobaric correlation achieving the highest accuracy.

4.2. Outlook

To enhance the reliability of predictions, several exten-
sions are proposed. The isobaric correlation highlighted
the negative impact of neglected pressure dependency.
Future work should integrate mechanical degrees of free-
dom in simulations to account for pressure dependency,
which significantly affects joint quality [96]. Additionally,
incorporating pore formation models [97] and moisture
effects [98,99] could enhance predictive accuracy. Expand-
ing the mathematical formulation to include a consolidation
model for “autohesion” [100, 101] would improve predic-
tions for incomplete welds, while a continuous degradation
model [102–104] could extend applicability to overheated
samples. Refining the crystallisation model within FEM
analysis [80, 81, 86] would further improve realism by
coupling mechanical and thermal effects [105,106].
The Sänger factor represents a valuable tool in the con-
text of digitalisation, enabling virtual process optimisation,
reducing experimental effort, and facilitating sustainable re-
source management in aerospace manufacturing. This ther-
mally based quality factor approach is transferable to all ther-
moplastic welding processes, provided a process simulation
exists to characterise heating and melting behaviour.
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