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Abstract

The preliminary design of high-lift configurations for fixed-wing aircraft is a complex, multi-disciplinary task usually relying
on extensive Design of Experiment (DoE) studies. This work presents a Variational Autoencoder (VAE)-based pipeline for
generating Adaptive Dropped-Hinge Flap (ADHF) concepts that satisfy engineering constraints on cruise drag, separation
behavior, and actuation efficiency. Trained on a curated set of desirable designs, the VAE produces novel configurations with
characteristics similar to proven solutions, enabling efficient exploration of the design space. A post-processing framework
evaluates these candidates and relates them to the original user input. The ADHF-VAE pipeline delivers a broader and
higher-quality range of designs in significantly fewer iterations than standard DoE, providing improved starting points for
downstream aerodynamic, kinematic, and integration analyses. This framework represents a first step towards automated,
data-driven synthesis of high-lift systems for future aircraft design.
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1. INTRODUCTION car design by learning latent representations of 3D point

clouds. They developed an interactive design support

Preliminary aircraft design is the phase in which market re-
quirements are translated into feasible concepts. This pro-
cess involves refining the overall aircraft characteristics and
architecture, including the definition of flight control devices
on the wing. A key element in this context is the design of
trailing edge flaps as part of the high-lift system. The mecha-
nism, or kinematics, has a strong influence on performance,
integration, and downstream design choices [1,2]; however,
its design typically requires several months of iterative ex-
changes among aerodynamics, kinematics, and integration
disciplines.

Preliminary flap kinematics design relies on multi-
disciplinary optimization processes and Designs of Ex-
periment (DoE) for exploration [2—4]. While these con-
ventional methods are established, they struggle with the
vast, high-dimensional design spaces, which can poten-
tially lead to inefficient exploration and the overlooking of
favorable solutions. This has motivated the exploration
of data-driven approaches capable of capturing complex
design dependencies, thereby accelerating and reducing
iterations.

The Variational Autoencoder (VAE) is a neural-network-
based generative model, introduced in 2013 by KiNngmA and
WELLING [5], and remains a versatile, widely used algorithm
with a wide range of applications. Its stochastic properties
in conjunction with the structured latent space, which is
agnostic to downstream processing, have been exploited in
engineering design as they allow the efficient exploration
of large design spaces and the accelerated assessment of
design performance through dimensionality reduction.

Lew and BueHLER [B6] proposed a reduced-order model
comprising a VAE for reducing the dimensionality of a
cantilever design problem, and a long short-term memory
neural network for learning topology optimization trajectories
within the latent design space. In a series of studies [7—10],
SAHA et al. investigated the use of VAEs for conceptual
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system, providing guidance for design space exploration
and real-time performance feedback. In a study conducted
by WaNG et al. [11], a conditional generative design method
for airfoils based on Conditional Variational Autoencoders
(CVAEs) was proposed. This approach allowed the airfoll
design generation to be shape-conditioned (thickness and
camber), aerodynamics-conditioned (pressure distribu-
tions, lift-to-drag ratio, and lift coefficient), as well as a
combination of both.

DesHPANDE and PuRwAR [12] proposed the variational syn-
thesis approach involving VAEs as intermediaries between
designer and computational kinematics solver for linkages.
Their fundamental idea revolved around exploiting the in-
put sensitivity of such solvers by generating a diverse set of
novel inputs conditioned on the inherent knowledge of the
model, starting with a single, uncertain user input.

In this paper, a novel design pipeline integrating VAEs into
preliminary flap kinematics design is proposed. As proba-
bilistic generative models, VAEs can learn compact lower-
dimensional representations of design data and generate
new candidates reflecting similar properties. This algorithm
is employed as an input recognition and conditioning mod-
ule in our work, preceding a processing pipeline for kine-
matics synthesis and evaluation, aiding designers in navi-
gating complex design spaces while retaining control. By
consolidating expert knowledge in such a framework, di-
verse sets of favorable candidate designs can be gener-
ated, thereby enriching design proposals in preliminary de-
sign. The results demonstrate the potential and challenges
of data-driven design workflows and lay the groundwork for
future research.

2. METHODOLOGY

To realize such a framework, multiple preliminary steps are
required. To allow for an efficient representation of designs,

doi: 10.25967/650353


https://doi.org/10.25967/650353

Deutscher Luft- und Raumfahrtkongress 2025

an effective form of parameterization is required. Further-
more, to consolidate and exploit expert knowledge with a
generative model, a dataset is required that reflects such
knowledge. As the utilization of data from operational air-
craft is insufficient in terms of the number of data points, the
dataset was synthetically generated. Finally, VAEs were im-
plemented, trained, and evaluated.

2.1. Design Parameterization

For this study, the simplest state-of-the-art mechanism was
selected, featuring a hinged flap with downward deflecting
spoiler, as implemented on the Boeing 787 and Airbus
A350. On the A350, this mechanism is referred to as Adap-
tive Dropped Hinge Flap (ADHF), featuring multi-functional
spoilers that are integrated for downward deflection, also
known as droop, in addition to their conventional functional-
ity as roll-control or lift-dumping devices [13].

overlap

5Flap

FIG 1. Aerodynamic parameterization of ADHF designs.

Fig. 1 depicts a common form of high-lift parameterization
that was adopted for this work to represent ADHF designs in
clean and target settings. The gap g is defined as the radius
of a circle centered on the spoiler’s trailing edge that tangen-
tially intersects with the flap. Conversely, ovl is the overlap of
flap and spoiler, measured between the spoiler trailing edge
and the flap leading edge. Flap and spoiler deployment an-
gles ér and dsp, respectively, are measured relative to the
retracted position. Flap and spoiler chords were kept con-
stant for this study, with cr = 0.23cw and csp = 0.12 cw,
respectively, relative to local wing chord cw. A representa-
tive wing section at the inboard flap field support station of
a medium-range aircraft was used.

In this work, the term design option refers to a five-
dimensional feature vector that defines an ADHF design:

OVICIean

OVItarget

X = gtargct
Ssp
or

The indices clean and target represent the retracted and the
fully deployed setting of an ADHF design, respectively. Note
that ér and ds;, both represent the target setting - the indices
were omitted for clarity. Note that due to the simplicity of
this mechanism, a design is fully defined based on the men-
tioned two settings and does not allow for the definition of
additional intermediate settings, e.g., for take-off.

2.2. Dataset Generation with Engineering Constraints

The data generation comprised several steps, as illustrated
in fig. 2. First, a DoE study was carried out to gather a
large initial design population, uniformly distributed across
the design space. Subsequently, each design option was
synthesized into an ADHF design and optimized regarding
the actuator position. Key Performance Indicators (KPlIs)
were then derived from each design and used to filter the
design population according to three defined engineering
constraints. The final population comprises exclusively fa-
vorable ADHF designs, according to the defined objectives.

2.2.1. Design of Experiment

A total of 32768 = 2'5 design options were sampled utilizing
Sobol’ sequences [14]. Due to its low-discrepancy property,
this method quickly converges to a uniform distribution of
samples in the design space, which is a desirable property
for the generative modeling task, in which the sample dis-
tributions is learned. The employed parameter ranges for
each feature are depicted in tab. 1.

feature unit min. value max. value
ovlciean [ cw] 7 9
ovlgarges  [%0 cw] 1 2
Starget [% cw] 1 2
Osp [°] 6 12
or [°] 30 45

TAB 1. Selected parameter range for each design feature.

2.2.2. Kinematics Synthesis and Optimization

The general objective of kinematics synthesis is to iden-
tify one or more linkage mechanisms that fulfill a certain
task [15]. In the context of flap kinematics, the task is that
of motion generation, also known as rigid-body guidance,
which involves identifying link lengths and joint positions.
For the ADHF mechanism, there are two unknown joints:
the actuator and the hinge. While the hinge point can be
uniquely determined from a design option x with methods

Actuator Efficiency

Cruise Drag Impact

Separation Tendency

Engineering Dataset

Desian of Kinematics
Ex er?ment Synthesis &
? Optimization

Constraints

FIG 2. Schematic of data generation pipeline.
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such as two-position synthesis [16], the actuator position is
driven by design constraints such as the available installa-
tion space and the actuator load. Therefore, identification
of the actuator position was formulated as an optimization
problem.

(ax, az)

Set initial actuator position
and constraints

Optimize for minimum
actuator load

FIG 3. Actuator position optimization within the available wing
trailing edge integration space.

The optimization design variables were the x and z-
coordinates of the actuator joint, a, and a., respectively.
As illustrated in fig. 3, constraints in the form of upper and
lower bounds on the design variables were imposed. The
objective to be minimized was the actuator load, computed
based on the aerodynamic flap loads. The actuator lever
arm was kept constant, resulting in a fixed ratio between
the perpendicular load on the lever T, and the resulting
actuator moment M,c.. The drive strut length, on the
other hand, which is the link attaching the lever arm to
the flap truss structure, was variable and determined by a
dedicated computational ADHF solver taking into account
the displacement of all elements in the kinematic chain.
The sectional flap load components are defined as:

(1) Nr =¢CN - Qoo - AF
2) Tr = cT * goo * AF

in which Nz and Tr correspond to normal and tangential
forces, respectively, acting in the center of pressure relative
to the chord line. The corresponding force coefficients are
denoted ¢y and cr. A unit width was utilized to compute
the flap area Ar = cr - 1m. The ambient dynamic pres-
sure ¢-, was set according to flap design speeds of a ref-
erence aircraft (A350-1000), as per airworthiness require-
ments §25.335 (e) in the EASA CS-25 [17]. Regression re-
lationships to compute the load coefficients and center of
pressure over §r were kindly provided by Airbus engineers.
Altogether, this enabled the simulation of resulting flap loads
Fy over dp.

The objective function was defined as follows: Given an ac-
tuator position (as,a.), the ADHF solver synthesizes the
lever arm and drive strut. A load solver subsequently com-

putes the actuator loads based on flap loads at deflection an-
gles dr € [19°, max(40°, 0 target )] With a step size Adp =
3°. The objective function value then is the maximum abso-
lute actuator load max(|T.c¢ |) within the evaluated deflection
angle range.

2.2.3. Actuator Efficiency

Based on the optimized actuator position, the first metric
used to constrain ADHF designs was computed: the ratio
of actuator load to flap load R..:. It was defined as:

With 07 max = argmax [Tact (07 )|
S F max G

Ract Was used to characterize the efficiency of load transfer,
as it represents the multiples of the flap load the actuator
must generate to move the mechanism. A larger R..: indi-
cates less efficient actuation, as it requires a more powerful
actuator to generate the required load. This increase in ac-
tuator size results in higher weight and requires more instal-
lation space, which imposes additional design constraints.
Engineering experience suggests that actuators start to be-
come ineffective beyond ratios of 2, yielding the actuator ef-
ficiency constraint:
Ract < 2.0

2.2.4. Fairing Drag

The second applied constraint limits the cruise drag incre-
ment due to the fairing streamlining the mechanism. Fairing
shapes were generated based on standard design principles
followed at Airbus, from which the wetted area could be in-
ferred. A relationship between wetted area, wing area, and
skin friction coefficient was employed to compute the cruise
drag increment. The constraint value was determined based
on its effect on the feature distribution. As a much larger por-
tion of designs were discarded through this constraint, cer-
tain feature value ranges were fully neglected. To this end,
an initial reference threshold was relaxed until this behavior
was no longer observed, yielding the fairing drag constraint
as:
AC’D,fairing < 0.9

With this threshold, the sample density regarding ér
plateaued between 42° and 45° (see fig. 4). While solutions
with larger 6 » are desirable with respect to fairing size, there
are trade-offs, such as for take-off performance, that must
be considered. To simulate an adversarial, a penalty was
introduced by amplification of the cruise drag increment of
design options with 6 > 40° with a penalty factor A. The

Fairing Drag Constraint with Penalty

-
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600 0.9dc
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FIG 4. Effect of the fairing drag constraint with and without flap angle penalty on the distribution of flap target angles 6y.
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underlying function is of the form:

,if oF < 40°
, otherwise

1
“) Aor) = {0.02 (65 — 40)>

As can be observed in fig. 4, the dr-distribution with penalty
reflects that smaller 6 are not desirable due to large fair-
ing drag increments, and larger 6 are not desirable due to
compromised take-off performance.

2.2.5. Separation Tendency

The third engineering constraint was based on two metrics
characterizing the flow separation tendency to evaluate the
slot geometry: suction peak ¢y min @and maximum boundary
layer form factor Hi2,max. A numerical solver was employed,
specifically developed to compute the incompressible flow
around high-lift configurations by the iterative coupling of an
inviscid panel code solution with a viscous integral method
solution for boundary layer and wake.
A design option x in target configuration comprised the fol-
lowing three elements:
1) A slat in target setting (constant for all x): grarget =
1.5% cw, ovlgarges = 0.0% cw, os = 28°
2) Aflap in target setting (given by x)
3) The effective main airfoil shape resulting from the deploy-
ment of all devices, including spoiler droop
The approach was to determine for each ADHF design x in
high-lift configuration, whether it offers stable aerodynamic
performance throughout multiple operating points. For that,
arange of angles of attack oo = [0°, 3°,6°,9°,12°] was com-
puted for a Reynolds number Re = 2.1 - 107 and a Mach
number Ma = 0.20. Based on literature [2, 18] and engi-
neering knowledge, the computed pressure and form factor
distributions over the devices ¢, and H2, respectively, were
used to constrain the remaining design options, after apply-
ing the preceding two constraints:

Cpomin > —10.0
HlQ,max < 4.0.

If an ADHF design x violated at least one of the constraints
for any operating point («, Re, Ma), it was discarded from
the dataset. The ¢, min constraint, which is primarily a sep-
aration criterion relevant at maximum lift [2], did not become
active since the maximum angle of attack of 12° remained
below this condition, but was nevertheless retained as a
lower bound.

2.2.6. Post-Processing

After applying each engineering constraint, 6648 ADHF
designs, 20.3 % of the initial population, remained in the fil-
tered dataset. Fig. 5 displays individual feature distributions
compared to the initial uniform distribution. The actuator

0Vlciean [%oCw] UVItarget [Y%ocw]

1500

1000

# Remaining x
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Jtarget [%Cw]

efficiency constraint primarily discarded designs yielding
larger lever arms between flap load and hinge point, requir-
ing more powerful actuation. The fairing drag constraint
predominantly discarded designs with larger ovlcean and
smaller ér, as they drive hinge point depth and therefore
increase fairing size. The form factor constraint uniformly
shaped the features with respect to their prior distribution.
The dataset was finally standardized and split into three
parts: 70 % (4653 samples) for training, 15 % (997 samples)
for validation, 15 % (998 samples) for testing.

2.3. Variational Autoencoder of Design Options

VAEs are machine learning algorithms based on neural net-
works that can be trained with gradient-based optimizers.
In our work, the encoder compresses ADHF designs into a
reduced, or latent, representation, while the decoder recon-
structs the original design from this representation, as illus-
trated in fig. 6. The bottleneck is denoted the latent space
and resembles a lower-dimensional proxy of the original de-
sign space learned during training.

VAEs are trained by maximizing the Evidence Lower Bound
(ELBO), which is typically expressed as a loss function L to
be minimized during training [19, 20]:

®)
L‘,VAE(Q7 ¢5; X) = —ELBO
= B Dkwr(q(z(x) || p(2)) — Eq(a|x)[log p(x|2)]

regularization term

reconstruction term

Eqg. 5 represents the loss with respect to the encoder
weights ¢ and the decoder weights 6 for a training sample,
i.e., ADHF design option, x and its latent representation
z. The first term on the right side of eq. 5 represents the
Kullback-Leibler (KL) divergence, quantifying the difference
in information content of two probability distributions [21].
It ensures that the learned posterior distribution ¢(z|x) is
similar to the prior distribution p(z), which in our case was
chosen to be unit Gaussian. To control the capacity of the
latent space, a hyperparameter 3 can be multiplied with
the KL term, as originally proposed by HigaIns et al. [22].
The second term on the right side of eq. 5 represents the
reconstruction loss, which was implemented as the Mean
Squared Error (MSE) between input x and reconstruction
X.

A VAE with a fully-connected neural network architecture
was implemented in Python, based on the open-source
deep learning library PyTorch [23]. After an initial study
seeking to find a suitable architecture, early-stopping
and plateau-learning-rate-scheduling were implemented
with a moving loss average over 20 epochs to increase the
efficiency and robustness of training. Finally, a Bayesian hy-
perparameter optimization was carried out with Optuna [24]
to identify optimal settings for initial learning rate and batch

6sp[°] 6r[°]

500
ot .. o 00— - .....||I|||||||I|
7 8 40

1.5 20 75 10.0 30

mmm  After Constraints

FIG 5. Feature distribution in the dataset after applying all constraints.

©2025



Deutscher Luft- und Raumfahrtkongress 2025

Reference Design

Generated Designs

FIG 6. Adaptive Dropped Hinge Flap Variational Autoencoder: Based on a reference design, designs with similar properties can

be generated.

size. Details about hyperparameters are provided in tab.
2. The latent dimensionality was fixed to 3 with 3 = 1072
throughout the experiments.

optimizer AdamW
initial learning rate 61073
batch size 128
maximum epochs 30,000
encoder neurons (64, 32)
decoder neurons (32, 64)
activation Leaky RelLU
encoder dropout probability 0.05

early-stopping patience
scheduler patience
moving average window size

1500 epochs
1500 epochs
20 epochs

TAB 2. VAE hyperparameter settings.

2.4. Latent Space Analysis

While reconstruction quality is quantifiable via metrics such
as MSE and R?, ensuring a high quality of the latent de-
sign space requires assessment of the latent space struc-
ture. To this end, a parameter sweep over latent space di-
mensionality d = [2,3,4] and regularization strength 5 =
[0,10°] withi = —7,...,0 was carried out.

All trained models were first evaluated using MSE and R>
on the test set, as illustrated in fig. 7. For 3 < 1073, recon-
struction performance is consistently high. From g = 1072,
a steep performance drop can be observed towards 5 = 1,
at which reconstruction performance reaches a minimum of
R? = 0%. Increasing d improves performance due to the
reduced information bottleneck.

The second step of this analysis was the qualitative evalua-
tion of the latent space structures. To this end, the dataset
was encoded with each configuration, and the resulting la-

Latent Dimensions
2
—— 3
0.3 —— 4
0.2

0.5

MSE

0.1

0.05

0.03
0.02

Q A o 5 b 2 P2 A
AQ 4D AT AT AQ AT 4O

B

tent representations were visualized in 2D scatter plots. For
latent dimensions d > 2, the two most active latent dimen-
sions were selected, based on their contribution to recon-
struction accuracy R?. Fig. 8 displays latent space struc-
tures for a subset of model configurations. The structural
characteristics vary significantly with 3, as lower values im-
pose less regularization on the encoder for shaping the la-
tent distribution, while higher values increasingly force it to
learn a unit Gaussian latent design space. For 8 = 1, the
posterior collapse phenomenon was observed, i.e., the pos-
terior collapses onto the unit Gaussian prior distribution. In
that case, sample locations are invariant with respect to the
input, and models tend to produce generic outputs such as
the dataset mean [25].

Although superior reconstruction performance was
achieved with the largest bottleneck d = 4 and weak
encoder regularization 0 < 8 < 107*, corresponding
latent representations lack completeness. Gaps or "blank”
regions may yield unpredictable results, particularly for
unseen inputs projected into these areas. For d = 2,
no configuration yielded fully satisfactory results, with R?
around 81 % - our objective was 90 %. With d = 3, most
configurations achieve R*? = 90 %, however, their latent
spaces are not regular. For d = 4, configurations with
8 =10"2and 8 = 10~ 2 stand out.

To conclude the analysis, the three most promising configu-
rations,d =4, =10"3d=4,8=10"2%,andd =3, 8 =
1072, were examined in detail. The two most active dimen-
sions of their latent spaces per feature are displayed in fig.
9. For the d = 4, 8 = 10~2 model (fig. 9a), which achieved
near perfect reconstructions with R> = 97.3 %, encodings
are mostly regular, except a discontinuity for giareet that may
cause larger spread for this feature when sampling in its
vicinity. The d = 4, 8 = 102 model with R = 95.0 % (fig.
9b) shows good structure overall, but there is also a vertical
discontinuity apparent, particularly for 6r. The d = 3, 8 =
102 model with R* = 90.7% (fig. 9¢) exhibits an incom-
plete latent structure with three separate regions, although
the feature values vary continuously over the regions. The

0.8

0.6

R2

0.4
0.2

0.0
Q A o 5 P 2 P gt
A0 AR 40T AR 40T A0 4O

B

FIG 7. Reconstruction performance of different model configurations, varying the latent space dimensionality d and regulariza-

tion strength 3.
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Latent Space Dimensionality d

103
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Regularization Strength 8

FIG 8. Dataset encoded into the two most active latent variables of different model configurations, varying the latent space
dimensionality d and regularization strength 5. The color of each latent vector corresponds to the clean overlap ovl;can
(a) and flap angle 6 (b). Similarly, the marker size was adjusted according to the target gap g;..¢c+ (@) and target overlap
ovlsarget (b). The value ranges per plot can differ significantly.

encoding for ovlarget iS NOISY, suggesting this feature may
not be represented well by the displayed dimensions.

In summary, the d = 4 models are likely to perform well in
terms of reconstructing known inputs, but may lack diversity
when generating new samples. In contrast, the d = 3 model
may lead to more diverse outputs, though less accurate in
generating designs similar to the reference design. Inves-
tigating the physical structure of each latent dimension and
the encoding of each feature can be a time-consuming pro-
cess and is only one aspect of deciding on a suitable set
of hyperparameters. For subsequent analysis, the d = 4,
B = 1072 model was excluded due to its large R?, which
offered too little design diversity.

3. RESULTS

3.1. Design Generation

A selection of superior model configurations was tested on
the basis of two distinct ADHF design scenarios. The first
simulates a user input in form of a reference design, corre-
sponding to the starting point for design space exploration.
The second scenario, conversely, involves providing explicit
performance targets to assess the models’ abilities to gener-
ate diverse designs that satisfy these prescribed objectives.

3.1.1. Design Target

The design target scenario is represented by an unfavorable
reference design. This scenario is specifically characterized
by a larger ovlciean @and a smaller §r, which were particularly
penalized during data generation due to their contribution
to large fairing drag increments. The representative design

©2025

option for this low-density feature region was defined as:

ovlclean 8.5% cw
OVltarget 1.3% cw
X = | Ztarget | = |1.8% cw
dsp 6.5°
or 36.0°

Based on this reference design, 20 novel designs were gen-
erated. Fig. 10 displays ADHF designs with their respective
feature values and KPIs generated by both models. Both
models perform a correction of the reference design, for in-
stance, by generating designs with larger flap angles. Thisis
because the input is not part of the learned data manifold of
favorable ADHF designs, as the reference design does not
adhere to two of the constraints. While the d = 4 model (fig.
10a) generates designs with less deviation to the reference
and more diversity, the d = 3 model (fig. 10b) consistently
generates favorable designs, however, with only little diver-
sity.

3.1.2. Performance Target

The second scenario explores design generation based
on specific target performance objectives, reflecting a
designer’s direct preference. Unlike the previous scenario
that relied on defining a reference design as input, in this
case, KPIs serve as the basis for design generation. The
representative performance target was defined as:

Ract = 1.5
AC‘D,fairing =0.7
H12,max =35

To identify a suitable design option corresponding to this
target, a nearest neighbor search was performed using the
KPIs of each design in the dataset. To ensure equal weight-
ing, each KPI was first standardized. The Euclidean dis-
tance to the query point (representing the performance tar-
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FIG 9. Dataset encoded into the two most active latent variables of the three best-performing model configurations.

get) was then computed. The design option associated with
the smallest Euclidean distance to this query point served
as the reference input, thereby indirectly representing the
user’s desired performance. For this scenario, the identified
reference design was:

oVlclean 7.8% cw
ovltarget 1.3% ew
X = [ Btarget = |1.1% cw
dsp 6.1°
OoF 40.8°

Fig. 11 displays 20 ADHF designs generated with both mod-
els based on the performance target. In contrast to the pre-
vious scenario, there is significantly less deviation apparent,
since the input is always part of the learned data manifold
with this approach. Both models reflect the performance tar-
get well and offer a range of similar-performing designs with
feature values spread around the reference. Although the
design diversity is similar in this case, the d = 3 model out-
puts (fig. 11b) exhibit larger offset to the reference design
and performance, and more often violate a constraint - Hi2
in this case.

Testing model candidates on various design generation
scenarios offered valuable insights into their characteristics.
The d = 4 model outperformed the d = 3 model in terms of
reconstruction accuracy and generative diversity. Although
d = 4 represents a comparably large bottleneck compared
to the d = 5 original design space, the intricate relationships
within the dataset and the specific test case require such
a configuration. For the remaining part of the analysis, the
d = 4 model will therefore be used for further investigations
and experiments.

©2025

3.2. Latent Performance Maps

Apart from the generative use of VAEs in design pipelines,
the learned latent design space can be used as a lower-
dimensional proxy of the higher-dimensional, original de-
sign space. Fig. 12 displays the latent representation color-
coded by each of the KPIs used during dataset generation.
Again, utilizing the two most active latent dimensions for vi-
sualization, this offers a natural interface for humans to un-
derstand and explore trade-offs.

The performance map displayed in fig. 12, learned by the
d = 4, 8 = 102 VAE, reveals, for instance, that actuation
efficiency R... and fairing drag ACp tairing act adversely.
Designs with lower ACp airing Yield shallower hinge points,
resulting in configurations with less efficient load transfer to
the actuator in the specific use case of our work.

3.3. Model Temperature

To increase the flexibility of VAEs as intermediaries between
designer and kinematics pipeline, the model temperature is
proposed, inspired by large language models. It is intended
to enable designers to request either a larger variance in
model outputs, i.e., the model is more "creative", or lower
variance, i.e., the user is more certain about the provided ref-
erence input and desires only little diversity. To incorporate
the temperature T into the generative process, the reparam-
eterization trick proposed by KinaMA and WELLING [5] was
extended to scale posterior standard deviation by T'.

Low temperature T' € [0, 1) can be used to enforce more de-
terministic model behavior, whereas high temperature T' €
(1, 00) can be used to enforce higher variance in generated
designs. The parameter was set to T' = 1.0 during model
training.

To investigate its effect, a temperature sweep was con-
ducted across values 7' = [0.5,1.0,2.0,3.0,5.0,8.0]. The
performance target from section 3.1.2 served as the refer-
ence input, based on which the posterior was inferred, and
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FIG 10. ADHF designs generated with each configuration. A reference design option x was fed to each model, representing

low-density feature values.

1000 samples were drawn. Fig. 13 displays kernel density
estimates of the sample distributions and corresponding
ADHF designs for a subset of temperatures.

For T' = 0.5, the posterior standard deviation is halved with
respect to the default temperature T = 1.0, causing a con-
centration of samples within a smaller area. Synthesized
designs show high similarity with minimal variance. The
temperature can be arbitrarily increased, corresponding to a
broader exploration of the latent design space. For instance,
at T = 5.0, the samples span approximately one-third of the
latent space, yielding a large variety of designs. It is im-
portant to note that the effect of model temperature is not
universal, but may vary between model configurations and
inputs. However, obtaining a quick overview of the temper-
ature effect, as shown in fig. 13, is computationally inexpen-
sive for this model size and can be computed in a fraction of
a second to set the desired level of design diversity before
the computationally expensive post-processing steps.

3.4. VAE vs. Conventional DoE

The final step of this work was a comparative analysis be-
tween the proposed VAE-based design pipeline and a con-
ventional DoE-based pipeline. The conventional approach
is based on Sobol’ sampling, rather than a generative model.
A global and a local design space exploration scenario were
considered for the comparison.

©2025

3.4.1. Global Exploration

In the first scenario, 128 design samples were generated
within the global design space (see tab. 1) with both ap-
proaches. The VAE pipeline was provided with a represen-
tative design containing the mean value of each feature’s
range and a temperature setting of 7' = 6.0.

Fig. 14 shows the distributions of feature values explored
with either method, as well as the KPIs of corresponding
ADHF designs. While the conventional DoE method yields
a uniform distribution across the design space, the VAE-
generated samples cluster in high-interest regions. Regard-
ing KPIs, most VAE-generated designs exhibit acceptable
Ract and ACD sairing below their respective constraint value.
However, a total of 45.3 % of the designs violate any one con-
straint, with 42.2 % of these violations attributed to H12 max.
As for the conventional pipeline, a substantial 82.0 % of de-
signs violate any one constraint, rendering the majority of
designs invalid. While violations of the actuator efficiency
constraint constitute a small fraction (8.6 %), the majority
of violations are attributable to the fairing drag constraint
(39.8 %) and the separation tendency (72.7 %).

3.4.2. Local Exploration

In the second scenario, the quality of designs produced
through local design space exploration was compared. The
target performance design scenario (see section 3.1.2)
served as the reference design for both approaches. VAE
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FIG 11. ADHF designs generated with each configuration. A reference design option x was fed to each model, representing a

performance target.

temperature was set to 7' = 2.0 in this case and the design
space for the conventional DoE was defined as +10 % of
the full feature range (see tab. 1) relative to the reference
input, resulting in the feature distributions shown in fig. 15.

While the conventional DoE draws samples uniformly
around the reference value, the VAE tends to generate
designs with larger target gaps and flap angles. The perfor-
mances of ADHF designs generated with both approaches
differ specifically for Hi2, for which all violations occurred.
A total of 31.3 % of designs generated with Sobol’ sampling
and 8.6 % of the VAE-generated designs violate the Hi.
constraint. This underlines that these two KPIs are con-
siderably more predictable and change smoothly across
feature values. Conversely, the underlying processes
determining separation behavior are far more complex and
depend on feature interactions. In such cases, the VAE’s
advantage lies in its ability to learn these relationships
from the training data distribution, thereby producing fewer
invalid designs.

The previous comparison demonstrates the fundamental dif-
ference between conventional and data-driven design space
exploration. The VAE performs exploration within a latent
space that represents the data manifold of the training data,
inherently focusing on favorable designs. Consequently, it
is significantly less prone to generating invalid designs, al-
though it requires time-consuming training and evaluation.

©2025

4. CONCLUSIONS

This work presented a generative, data-driven pipeline for
aircraft flap kinematics design, demonstrating the applicabil-
ity of VAEs in capturing complex design dependencies and
efficiently generating diverse candidate designs. Compared
to conventional DoE, the VAE-based approach enables
more efficient exploration of the design space, supports
intuitive visualization through latent performance maps,
and allows designers to tune solution diversity with model
temperature. These contributions highlight the potential
of generative models to accelerate preliminary design and
improve cross-disciplinary communication in early stages.
Future research may focus on scaling and adapting the
framework to increase fidelity and design freedom. This
could include incorporating additional KPIs (e.g. take-off
performance), adding shape parameters (e.g. flap and
spoiler chords), and expanding the approach to other rele-
vant kinematics types (e.g. track mechanisms). Conditional
generative models (e.g., CVAEs) could be employed to
guide sampling based on wing section characteristics (e.qg.
spanwise position), while surrogate models may address
the current KPI evaluation bottleneck and enable real-time
exploration.

The long-term vision is to move beyond sectional flap kine-
matics towards full 3D layouts, integrating multiple flaps and
leading-edge devices within a conditional generative frame-
work. Although this raises challenges related to data re-
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quirements and computational effort, the efficiency gains of
generative models are expected to become increasingly de-
cisive as design spaces grow. Ultimately, this work provides
a first step for generative modeling in flap kinematics de-
sign, laying the foundation for broader adoption of machine
learning in overall aircraft design.

Contact address:

antonschreiber99@gmail.com
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FIG 12. Latent performance maps: Dataset encoded into the two most active latent variables, color-coded by each of the KPIs.
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FIG 13. Effect of the model temperature on sampled representations and generated designs.
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FIG 14. Comparison of the feature and KPI distribution produced with a conventional DoE (Sobol’ sampling) and with a VAE for
global exploration.

—--- Reference Design VAE Conventional DoE

oVlgiean [%oCw] |

7.00 7.25 7.50 7.75 8.00 8.25 8.50 8.75 9.00

OVltarget [%oCw) 4--:~
1.0 1.2 1.4 1.6 1.8 2.0
Gtarget [YoCw] IW‘-
1.0 1.2 1.4 1.6 1.8 2.0
i
B[] snsm—
5 6 7 8 9 10 1" 12
¥
6r[°1 W'
30 32 34 36 38 40 42 44
Ract ACD,fairing H12,max
- e [|[¢° @ o
1.00 1.25 1.50 1.75 2.00 0.5 0.6 0.7 0.8 0.9 10 20 30

FIG 15. Comparison of the feature and KPI distribution produced with a conventional DoE (Sobol’ sampling) and with a VAE for
local exploration.

©2025 11



Deutscher Luft- und Raumfahrtkongress 2025

References

(1]

(2]

(3]

(4]

5

[}

6

—_

[7

—

(8l

(9]

[10]

[11]

[12]

[13]

[14]

Peter K. C. Rudolph. High-lift systems on commercial
subsonic airliners. Technical report, National Aeronau-
tics and Space Administration, 1996.

Jochen Wild. High-Lift Aerodynamics. CRC Press,

2022.

Dirk Franke. Multidisciplinary Design of High-Lift Sys-
tems. PhD thesis, 2019.

Parth Kumar and Brian J. German. Optimization of
high-lift systems at takeoff conditions subject to kine-
matic constraints. Journal of Aircraft, 59(4):1098—
1103, 2022.

Diederik P. Kingma and Max Welling. Auto-encoding
variational bayes, 2013.

Andrew J. Lew and Markus J. Buehler. Encoding and
exploring latent design space of optimal material struc-
tures via a vae-Istm model. Forces in Mechanics,
5:100054, 2021.

Sneha Saha, Stefan Menzel, Leandro L. Minku, Xin
Yao, Bernhard Sendhoff, and Patricia Wollstadt. Quan-
tifying the generative capabilities of variational autoen-
coders for 3d car point clouds. In 2020 IEEE Sym-
posium Series on Computational Intelligence (SSCI),
pages 1469-1477, 2020.

Sneha Saha, Leandro L. Minku, Xin Yao, Bernhard
Senhoff, and Stefan Menzel. Exploiting linear inter-
polation of variational autoencoders for satisfying pref-
erences in evolutionary design optimization. In 2021
IEEE Congress on Evolutionary Computation (CEC),
pages 1767—-1776, 2021.

Sneha Saha, Thiago Rios, Leandro L. Minku, Bas Vas
Stein, Patricia Wollstadt, Xin Yao, Thomas Back, Bern-
hard Sendhoff, and Stefan Menzel. Exploiting genera-
tive models for performance predictions of 3d car de-
signs. In 2021 IEEE Symposium Series on Computa-
tional Intelligence (SSCI), pages 1-9, 2021.

S. Saha, L. L. Minku, X. Yao, B. Sendhoff, and S. Men-
zel. Exploiting 3d variational autoencoders for interac-
tive vehicle design. Proceedings of the Design Society,
2:1747-1756, 2022.

Xu Wang, Weigi Qian, Tun Zhao, Hai Chen, Lei He,
Haisheng Sun, and Yuan Tian. A generative design
method of airfoil based on conditional variational au-
toencoder. Engineering Applications of Artificial Intelli-
gence, 139:109461, 2025.

Shrinath Deshpande and Anurag Purwar. Computa-
tional Creativity Via Assisted Variational Synthesis of
Mechanisms Using Deep Generative Models. Journal
of Mechanical Design, 141(12):121402, 2019.

Daniel Reckzeh. Multifunctional wing moveables: De-
sign of the a350xwb and the way to future concepts. In
Proceedings of the 29th Congress of the International
Council of the Aeronautical Sciences, 2014.

I.M Sobol’. On the distribution of points in a cube and
the approximate evaluation of integrals. USSR Com-
putational Mathematics and Mathematical Physics,
7(4):86-112, 1967. ISSN: 0041-5553.

©2025

12

(18]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

J. Angeles and S. Bai. Kinematics of Mechanical Sys-
tems: Fundamentals, Analysis and Synthesis. Mathe-
matical Engineering. Springer International Publishing,
2022.

Hanfried Kerle, Burkhard Corves, and Mathias
Huesing. Getriebetechnik. Springer Vieweg Wies-
baden, 2015.

European Union Aviation Safety Agency. Certification
specifications and acceptable means of compliance for
large aeroplanes (cs-25). European Union Aviation
Safety Agency, 2023.

J. Gordon Leishman. Introduction to Aerospace Flight
Vehicles. Creative Commons, 2024.

Carl Doersch. Tutorial on variational autoencoders,
2021.

Kevin P. Murphy. Probabilistic Machine Learning: Ad-
vanced Topics. MIT Press, 2023.

Christopher M. Bishop. Pattern Recognition and Ma-
chine Learning (Information Science and Statistics).
Springer, 1 edition, 2006.

Irina Higgins, Loic Matthey, Arka Pal, Christopher P.
Burgess, Xavier Glorot, Matthew M. Botvinick, Shakir
Mohamed, and Alexander Lerchner. beta-vae: Learn-
ing basic visual concepts with a constrained variational
framework. In ICLR (Poster). OpenReview.net, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang,
Zachary DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Jun-
jie Bai, and Soumith Chintala. Pytorch: An imperative
style, high-performance deep learning library. In Ad-
vances in Neural Information Processing Systems 32,
pages 8024—-8035. Curran Associates, Inc., 2019.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase,
Takeru Ohta, and Masanori Koyama. Optuna: A next-
generation hyperparameter optimization framework. In
Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
2019.

James Lucas, George Tucker, Roger Grosse, and Mo-
hammad Norouzi. Don’t blame the elbo! a linear vae
perspective on posterior collapse, 2019.



	Introduction
	Methodology
	Design Parameterization
	Dataset Generation with Engineering Constraints
	Design of Experiment
	Kinematics Synthesis and Optimization
	Actuator Efficiency
	Fairing Drag
	Separation Tendency
	Post-Processing

	Variational Autoencoder of Design Options
	Latent Space Analysis

	Results
	Design Generation
	Design Target
	Performance Target

	Latent Performance Maps
	Model Temperature
	VAE vs. Conventional DoE
	Global Exploration
	Local Exploration


	Conclusions



