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Abstract

The preliminary design of high-lift configurations for fixed-wing aircraft is a complex, multi-disciplinary task usually relying

on extensive Design of Experiment (DoE) studies. This work presents a Variational Autoencoder (VAE)-based pipeline for

generating Adaptive Dropped-Hinge Flap (ADHF) concepts that satisfy engineering constraints on cruise drag, separation

behavior, and actuation efficiency. Trained on a curated set of desirable designs, the VAE produces novel configurations with

characteristics similar to proven solutions, enabling efficient exploration of the design space. A post-processing framework

evaluates these candidates and relates them to the original user input. The ADHF-VAE pipeline delivers a broader and

higher-quality range of designs in significantly fewer iterations than standard DoE, providing improved starting points for

downstream aerodynamic, kinematic, and integration analyses. This framework represents a first step towards automated,

data-driven synthesis of high-lift systems for future aircraft design.
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1. INTRODUCTION

Preliminary aircraft design is the phase in which market re-

quirements are translated into feasible concepts. This pro-

cess involves refining the overall aircraft characteristics and

architecture, including the definition of flight control devices

on the wing. A key element in this context is the design of

trailing edge flaps as part of the high-lift system. The mecha-

nism, or kinematics, has a strong influence on performance,

integration, and downstream design choices [1,2]; however,

its design typically requires several months of iterative ex-

changes among aerodynamics, kinematics, and integration

disciplines.

Preliminary flap kinematics design relies on multi-

disciplinary optimization processes and Designs of Ex-

periment (DoE) for exploration [2–4]. While these con-

ventional methods are established, they struggle with the

vast, high-dimensional design spaces, which can poten-

tially lead to inefficient exploration and the overlooking of

favorable solutions. This has motivated the exploration

of data-driven approaches capable of capturing complex

design dependencies, thereby accelerating and reducing

iterations.

The Variational Autoencoder (VAE) is a neural-network-

based generative model, introduced in 2013 by Kingma and

Welling [5], and remains a versatile, widely used algorithm

with a wide range of applications. Its stochastic properties

in conjunction with the structured latent space, which is

agnostic to downstream processing, have been exploited in

engineering design as they allow the efficient exploration

of large design spaces and the accelerated assessment of

design performance through dimensionality reduction.

Lew and Buehler [6] proposed a reduced-order model

comprising a VAE for reducing the dimensionality of a

cantilever design problem, and a long short-term memory

neural network for learning topology optimization trajectories

within the latent design space. In a series of studies [7–10],

Saha et al. investigated the use of VAEs for conceptual

car design by learning latent representations of 3D point

clouds. They developed an interactive design support

system, providing guidance for design space exploration

and real-time performance feedback. In a study conducted

by Wang et al. [11], a conditional generative design method

for airfoils based on Conditional Variational Autoencoders

(CVAEs) was proposed. This approach allowed the airfoil

design generation to be shape-conditioned (thickness and

camber), aerodynamics-conditioned (pressure distribu-

tions, lift-to-drag ratio, and lift coefficient), as well as a

combination of both.

Deshpande and Purwar [12] proposed the variational syn-

thesis approach involving VAEs as intermediaries between

designer and computational kinematics solver for linkages.

Their fundamental idea revolved around exploiting the in-

put sensitivity of such solvers by generating a diverse set of

novel inputs conditioned on the inherent knowledge of the

model, starting with a single, uncertain user input.

In this paper, a novel design pipeline integrating VAEs into

preliminary flap kinematics design is proposed. As proba-

bilistic generative models, VAEs can learn compact lower-

dimensional representations of design data and generate

new candidates reflecting similar properties. This algorithm

is employed as an input recognition and conditioning mod-

ule in our work, preceding a processing pipeline for kine-

matics synthesis and evaluation, aiding designers in navi-

gating complex design spaces while retaining control. By

consolidating expert knowledge in such a framework, di-

verse sets of favorable candidate designs can be gener-

ated, thereby enriching design proposals in preliminary de-

sign. The results demonstrate the potential and challenges

of data-driven design workflows and lay the groundwork for

future research.

2. METHODOLOGY

To realize such a framework, multiple preliminary steps are

required. To allow for an efficient representation of designs,
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an effective form of parameterization is required. Further-

more, to consolidate and exploit expert knowledge with a

generative model, a dataset is required that reflects such

knowledge. As the utilization of data from operational air-

craft is insufficient in terms of the number of data points, the

dataset was synthetically generated. Finally, VAEs were im-

plemented, trained, and evaluated.

2.1. Design Parameterization

For this study, the simplest state-of-the-art mechanism was

selected, featuring a hinged flap with downward deflecting

spoiler, as implemented on the Boeing 787 and Airbus

A350. On the A350, this mechanism is referred to as Adap-

tive Dropped Hinge Flap (ADHF), featuring multi-functional

spoilers that are integrated for downward deflection, also

known as droop, in addition to their conventional functional-

ity as roll-control or lift-dumping devices [13].

FIG 1. Aerodynamic parameterization of ADHF designs.

Fig. 1 depicts a common form of high-lift parameterization

that was adopted for this work to represent ADHF designs in

clean and target settings. The gap g is defined as the radius

of a circle centered on the spoiler’s trailing edge that tangen-

tially intersects with the flap. Conversely, ovl is the overlap of

flap and spoiler, measured between the spoiler trailing edge

and the flap leading edge. Flap and spoiler deployment an-

gles δF and δSp, respectively, are measured relative to the

retracted position. Flap and spoiler chords were kept con-

stant for this study, with cF = 0.23 cW and cSp = 0.12 cW,

respectively, relative to local wing chord cW. A representa-

tive wing section at the inboard flap field support station of

a medium-range aircraft was used.

In this work, the term design option refers to a five-

dimensional feature vector that defines an ADHF design:

x =











ovlclean

ovltarget

gtarget

δSp

δF











.

The indices clean and target represent the retracted and the

fully deployed setting of an ADHF design, respectively. Note

that δF and δSp both represent the target setting - the indices

were omitted for clarity. Note that due to the simplicity of

this mechanism, a design is fully defined based on the men-

tioned two settings and does not allow for the definition of

additional intermediate settings, e.g., for take-off.

2.2. Dataset Generation with Engineering Constraints

The data generation comprised several steps, as illustrated

in fig. 2. First, a DoE study was carried out to gather a

large initial design population, uniformly distributed across

the design space. Subsequently, each design option was

synthesized into an ADHF design and optimized regarding

the actuator position. Key Performance Indicators (KPIs)

were then derived from each design and used to filter the

design population according to three defined engineering

constraints. The final population comprises exclusively fa-

vorable ADHF designs, according to the defined objectives.

2.2.1. Design of Experiment

A total of 32768 = 215 design options were sampled utilizing

Sobol’ sequences [14]. Due to its low-discrepancy property,

this method quickly converges to a uniform distribution of

samples in the design space, which is a desirable property

for the generative modeling task, in which the sample dis-

tributions is learned. The employed parameter ranges for

each feature are depicted in tab. 1.

feature unit min. value max. value

ovlclean [% cW] 7 9

ovltarget [% cW] 1 2

gtarget [% cW] 1 2

δSp [◦] 6 12

δF [◦] 30 45

TAB 1. Selected parameter range for each design feature.

2.2.2. Kinematics Synthesis and Optimization

The general objective of kinematics synthesis is to iden-

tify one or more linkage mechanisms that fulfill a certain

task [15]. In the context of flap kinematics, the task is that

of motion generation, also known as rigid-body guidance,

which involves identifying link lengths and joint positions.

For the ADHF mechanism, there are two unknown joints:

the actuator and the hinge. While the hinge point can be

uniquely determined from a design option x with methods

FIG 2. Schematic of data generation pipeline.
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such as two-position synthesis [16], the actuator position is

driven by design constraints such as the available installa-

tion space and the actuator load. Therefore, identification

of the actuator position was formulated as an optimization

problem.

FIG 3. Actuator position optimization within the available wing
trailing edge integration space.

The optimization design variables were the x and z-

coordinates of the actuator joint, ax and az, respectively.

As illustrated in fig. 3, constraints in the form of upper and

lower bounds on the design variables were imposed. The

objective to be minimized was the actuator load, computed

based on the aerodynamic flap loads. The actuator lever

arm was kept constant, resulting in a fixed ratio between

the perpendicular load on the lever Tact and the resulting

actuator moment Mact. The drive strut length, on the

other hand, which is the link attaching the lever arm to

the flap truss structure, was variable and determined by a

dedicated computational ADHF solver taking into account

the displacement of all elements in the kinematic chain.

The sectional flap load components are defined as:

NF = cN · q∞ ·AF(1)

TF = cT · q∞ ·AF(2)

in which NF and TF correspond to normal and tangential

forces, respectively, acting in the center of pressure relative

to the chord line. The corresponding force coefficients are

denoted cN and cT . A unit width was utilized to compute

the flap area AF = cF · 1m. The ambient dynamic pres-

sure q∞ was set according to flap design speeds of a ref-

erence aircraft (A350-1000), as per airworthiness require-

ments §25.335 (e) in the EASA CS-25 [17]. Regression re-

lationships to compute the load coefficients and center of

pressure over δF were kindly provided by Airbus engineers.

Altogether, this enabled the simulation of resulting flap loads

FF over δF .

The objective function was defined as follows: Given an ac-

tuator position (ax, az), the ADHF solver synthesizes the

lever arm and drive strut. A load solver subsequently com-

putes the actuator loads based on flap loads at deflection an-

gles δF ∈ [19◦,max(40◦, δF,target)] with a step size ∆δF =
3◦. The objective function value then is the maximum abso-

lute actuator load max(|Tact|) within the evaluated deflection

angle range.

2.2.3. Actuator Efficiency

Based on the optimized actuator position, the first metric

used to constrain ADHF designs was computed: the ratio

of actuator load to flap load Ract. It was defined as:

(3) Ract =
Tact

FF

∣
∣
∣
∣
δF,max

with δF,max = argmax
δF

|Tact(δF )|

Ract was used to characterize the efficiency of load transfer,

as it represents the multiples of the flap load the actuator

must generate to move the mechanism. A larger Ract indi-

cates less efficient actuation, as it requires a more powerful

actuator to generate the required load. This increase in ac-

tuator size results in higher weight and requires more instal-

lation space, which imposes additional design constraints.

Engineering experience suggests that actuators start to be-

come ineffective beyond ratios of 2, yielding the actuator ef-

ficiency constraint:

Ract < 2.0

2.2.4. Fairing Drag

The second applied constraint limits the cruise drag incre-

ment due to the fairing streamlining the mechanism. Fairing

shapes were generated based on standard design principles

followed at Airbus, from which the wetted area could be in-

ferred. A relationship between wetted area, wing area, and

skin friction coefficient was employed to compute the cruise

drag increment. The constraint value was determined based

on its effect on the feature distribution. As a much larger por-

tion of designs were discarded through this constraint, cer-

tain feature value ranges were fully neglected. To this end,

an initial reference threshold was relaxed until this behavior

was no longer observed, yielding the fairing drag constraint

as:

∆CD,fairing < 0.9

With this threshold, the sample density regarding δF
plateaued between 42◦ and 45◦ (see fig. 4). While solutions

with larger δF are desirable with respect to fairing size, there

are trade-offs, such as for take-off performance, that must

be considered. To simulate an adversarial, a penalty was

introduced by amplification of the cruise drag increment of

design options with δF g 40◦ with a penalty factor λ. The

FIG 4. Effect of the fairing drag constraint with and without flap angle penalty on the distribution of flap target angles δF.
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underlying function is of the form:

(4) λ(δF ) =

{

1 , if δF < 40◦

0.02 (δF − 40)2 , otherwise

As can be observed in fig. 4, the δF-distribution with penalty

reflects that smaller δF are not desirable due to large fair-

ing drag increments, and larger δF are not desirable due to

compromised take-off performance.

2.2.5. Separation Tendency

The third engineering constraint was based on two metrics

characterizing the flow separation tendency to evaluate the

slot geometry: suction peak cp,min and maximum boundary

layer form factor H12,max. A numerical solver was employed,

specifically developed to compute the incompressible flow

around high-lift configurations by the iterative coupling of an

inviscid panel code solution with a viscous integral method

solution for boundary layer and wake.

A design option x in target configuration comprised the fol-

lowing three elements:

1) A slat in target setting (constant for all x): gtarget =
1.5% cW , ovltarget = 0.0% cW , δS = 28◦

2) A flap in target setting (given by x)

3) The effective main airfoil shape resulting from the deploy-

ment of all devices, including spoiler droop

The approach was to determine for each ADHF design x in

high-lift configuration, whether it offers stable aerodynamic

performance throughout multiple operating points. For that,

a range of angles of attack α = [0◦, 3◦, 6◦, 9◦, 12◦] was com-

puted for a Reynolds number Re = 2.1 · 107 and a Mach

number Ma = 0.20. Based on literature [2, 18] and engi-

neering knowledge, the computed pressure and form factor

distributions over the devices cp and H12, respectively, were

used to constrain the remaining design options, after apply-

ing the preceding two constraints:

cp,min > −10.0

H12,max < 4.0.

If an ADHF design x violated at least one of the constraints

for any operating point (α, Re, Ma), it was discarded from

the dataset. The cp,min constraint, which is primarily a sep-

aration criterion relevant at maximum lift [2], did not become

active since the maximum angle of attack of 12◦ remained

below this condition, but was nevertheless retained as a

lower bound.

2.2.6. Post-Processing

After applying each engineering constraint, 6648 ADHF

designs, 20.3% of the initial population, remained in the fil-

tered dataset. Fig. 5 displays individual feature distributions

compared to the initial uniform distribution. The actuator

efficiency constraint primarily discarded designs yielding

larger lever arms between flap load and hinge point, requir-

ing more powerful actuation. The fairing drag constraint

predominantly discarded designs with larger ovlclean and

smaller δF, as they drive hinge point depth and therefore

increase fairing size. The form factor constraint uniformly

shaped the features with respect to their prior distribution.

The dataset was finally standardized and split into three

parts: 70 % (4653 samples) for training, 15 % (997 samples)

for validation, 15 % (998 samples) for testing.

2.3. Variational Autoencoder of Design Options

VAEs are machine learning algorithms based on neural net-

works that can be trained with gradient-based optimizers.

In our work, the encoder compresses ADHF designs into a

reduced, or latent, representation, while the decoder recon-

structs the original design from this representation, as illus-

trated in fig. 6. The bottleneck is denoted the latent space

and resembles a lower-dimensional proxy of the original de-

sign space learned during training.

VAEs are trained by maximizing the Evidence Lower Bound

(ELBO), which is typically expressed as a loss function L to

be minimized during training [19,20]:

LVAE(θ, φ;x) = −ELBO

= β ·DKL(q(z|x) ∥ p(z))
︸ ︷︷ ︸

regularization term

−Eq(z|x)[log p(x|z)]
︸ ︷︷ ︸

reconstruction term

(5)

Eq. 5 represents the loss with respect to the encoder

weights φ and the decoder weights θ for a training sample,

i.e., ADHF design option, x and its latent representation

z. The first term on the right side of eq. 5 represents the

Kullback-Leibler (KL) divergence, quantifying the difference

in information content of two probability distributions [21].

It ensures that the learned posterior distribution q(z|x) is

similar to the prior distribution p(z), which in our case was

chosen to be unit Gaussian. To control the capacity of the

latent space, a hyperparameter β can be multiplied with

the KL term, as originally proposed by Higgins et al. [22].

The second term on the right side of eq. 5 represents the

reconstruction loss, which was implemented as the Mean

Squared Error (MSE) between input x and reconstruction

x̂.

A VAE with a fully-connected neural network architecture

was implemented in Python, based on the open-source

deep learning library PyTorch [23]. After an initial study

seeking to find a suitable architecture, early-stopping

and plateau-learning-rate-scheduling were implemented

with a moving loss average over 20 epochs to increase the

efficiency and robustness of training. Finally, a Bayesian hy-

perparameter optimization was carried out with Optuna [24]

to identify optimal settings for initial learning rate and batch

FIG 5. Feature distribution in the dataset after applying all constraints.
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FIG 6. Adaptive Dropped Hinge Flap Variational Autoencoder: Based on a reference design, designs with similar properties can
be generated.

size. Details about hyperparameters are provided in tab.

2. The latent dimensionality was fixed to 3 with β = 10−2

throughout the experiments.

optimizer AdamW

initial learning rate 6 · 10−3

batch size 128

maximum epochs 30,000

encoder neurons (64, 32)

decoder neurons (32, 64)

activation Leaky ReLU

encoder dropout probability 0.05

early-stopping patience 1500 epochs

scheduler patience 1500 epochs

moving average window size 20 epochs

TAB 2. VAE hyperparameter settings.

2.4. Latent Space Analysis

While reconstruction quality is quantifiable via metrics such

as MSE and R2, ensuring a high quality of the latent de-

sign space requires assessment of the latent space struc-

ture. To this end, a parameter sweep over latent space di-

mensionality d = [2, 3, 4] and regularization strength β =
[
0, 10i

]
with i = −7, . . . , 0 was carried out.

All trained models were first evaluated using MSE and R2

on the test set, as illustrated in fig. 7. For β f 10−3, recon-

struction performance is consistently high. From β = 10−2,

a steep performance drop can be observed towards β = 1,

at which reconstruction performance reaches a minimum of

R2 = 0%. Increasing d improves performance due to the

reduced information bottleneck.

The second step of this analysis was the qualitative evalua-

tion of the latent space structures. To this end, the dataset

was encoded with each configuration, and the resulting la-

tent representations were visualized in 2D scatter plots. For

latent dimensions d > 2, the two most active latent dimen-

sions were selected, based on their contribution to recon-

struction accuracy R2. Fig. 8 displays latent space struc-

tures for a subset of model configurations. The structural

characteristics vary significantly with β, as lower values im-

pose less regularization on the encoder for shaping the la-

tent distribution, while higher values increasingly force it to

learn a unit Gaussian latent design space. For β = 1, the

posterior collapse phenomenon was observed, i.e., the pos-

terior collapses onto the unit Gaussian prior distribution. In

that case, sample locations are invariant with respect to the

input, and models tend to produce generic outputs such as

the dataset mean [25].

Although superior reconstruction performance was

achieved with the largest bottleneck d = 4 and weak

encoder regularization 0 f β f 10−4, corresponding

latent representations lack completeness. Gaps or "blank"

regions may yield unpredictable results, particularly for

unseen inputs projected into these areas. For d = 2,

no configuration yielded fully satisfactory results, with R2

around 81% - our objective was 90%. With d = 3, most

configurations achieve R2 = 90%, however, their latent

spaces are not regular. For d = 4, configurations with

β = 10−3 and β = 10−2 stand out.

To conclude the analysis, the three most promising configu-

rations, d = 4, β = 10−3; d = 4, β = 10−2, and d = 3, β =
10−2, were examined in detail. The two most active dimen-

sions of their latent spaces per feature are displayed in fig.

9. For the d = 4, β = 10−3 model (fig. 9a), which achieved

near perfect reconstructions with R2 = 97.3%, encodings

are mostly regular, except a discontinuity for gtarget that may

cause larger spread for this feature when sampling in its

vicinity. The d = 4, β = 10−2 model with R2 = 95.0% (fig.

9b) shows good structure overall, but there is also a vertical

discontinuity apparent, particularly for δF . The d = 3, β =
10−2 model with R2 = 90.7% (fig. 9c) exhibits an incom-

plete latent structure with three separate regions, although

the feature values vary continuously over the regions. The

FIG 7. Reconstruction performance of different model configurations, varying the latent space dimensionality d and regulariza-
tion strength β.
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FIG 8. Dataset encoded into the two most active latent variables of different model configurations, varying the latent space
dimensionality d and regularization strength β. The color of each latent vector corresponds to the clean overlap ovlclean
(a) and flap angle δF (b). Similarly, the marker size was adjusted according to the target gap gtarget (a) and target overlap
ovltarget (b). The value ranges per plot can differ significantly.

encoding for ovltarget is noisy, suggesting this feature may

not be represented well by the displayed dimensions.

In summary, the d = 4 models are likely to perform well in

terms of reconstructing known inputs, but may lack diversity

when generating new samples. In contrast, the d = 3 model

may lead to more diverse outputs, though less accurate in

generating designs similar to the reference design. Inves-

tigating the physical structure of each latent dimension and

the encoding of each feature can be a time-consuming pro-

cess and is only one aspect of deciding on a suitable set

of hyperparameters. For subsequent analysis, the d = 4,

β = 10−3 model was excluded due to its large R2, which

offered too little design diversity.

3. RESULTS

3.1. Design Generation

A selection of superior model configurations was tested on

the basis of two distinct ADHF design scenarios. The first

simulates a user input in form of a reference design, corre-

sponding to the starting point for design space exploration.

The second scenario, conversely, involves providing explicit

performance targets to assess the models’ abilities to gener-

ate diverse designs that satisfy these prescribed objectives.

3.1.1. Design Target

The design target scenario is represented by an unfavorable

reference design. This scenario is specifically characterized

by a larger ovlclean and a smaller δF, which were particularly

penalized during data generation due to their contribution

to large fairing drag increments. The representative design

option for this low-density feature region was defined as:

x =











ovlclean

ovltarget

gtarget

δSp

δF











=











8.5% cW

1.3% cW

1.8% cW

6.5◦

36.0◦











Based on this reference design, 20 novel designs were gen-

erated. Fig. 10 displays ADHF designs with their respective

feature values and KPIs generated by both models. Both

models perform a correction of the reference design, for in-

stance, by generating designs with larger flap angles. This is

because the input is not part of the learned data manifold of

favorable ADHF designs, as the reference design does not

adhere to two of the constraints. While the d = 4 model (fig.

10a) generates designs with less deviation to the reference

and more diversity, the d = 3 model (fig. 10b) consistently

generates favorable designs, however, with only little diver-

sity.

3.1.2. Performance Target

The second scenario explores design generation based

on specific target performance objectives, reflecting a

designer’s direct preference. Unlike the previous scenario

that relied on defining a reference design as input, in this

case, KPIs serve as the basis for design generation. The

representative performance target was defined as:

Ract = 1.5

∆CD,fairing = 0.7

H12,max = 3.5

To identify a suitable design option corresponding to this

target, a nearest neighbor search was performed using the

KPIs of each design in the dataset. To ensure equal weight-

ing, each KPI was first standardized. The Euclidean dis-

tance to the query point (representing the performance tar-
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(a) (d = 4, β = 10
−3, R2

test = 97.3%)

(b) (d = 4, β = 10
−2, R2

test = 95.0%)

(c) (d = 3, β = 10
−2, R2

test = 90.7%)

FIG 9. Dataset encoded into the two most active latent variables of the three best-performing model configurations.

get) was then computed. The design option associated with

the smallest Euclidean distance to this query point served

as the reference input, thereby indirectly representing the

user’s desired performance. For this scenario, the identified

reference design was:

x =











ovlclean

ovltarget

gtarget

δSp

δF











=











7.8% cW

1.3% cW

1.1% cW

6.1◦

40.8◦











.

Fig. 11 displays 20 ADHF designs generated with both mod-

els based on the performance target. In contrast to the pre-

vious scenario, there is significantly less deviation apparent,

since the input is always part of the learned data manifold

with this approach. Both models reflect the performance tar-

get well and offer a range of similar-performing designs with

feature values spread around the reference. Although the

design diversity is similar in this case, the d = 3 model out-

puts (fig. 11b) exhibit larger offset to the reference design

and performance, and more often violate a constraint - H12

in this case.

Testing model candidates on various design generation

scenarios offered valuable insights into their characteristics.

The d = 4 model outperformed the d = 3 model in terms of

reconstruction accuracy and generative diversity. Although

d = 4 represents a comparably large bottleneck compared

to the d = 5 original design space, the intricate relationships

within the dataset and the specific test case require such

a configuration. For the remaining part of the analysis, the

d = 4 model will therefore be used for further investigations

and experiments.

3.2. Latent Performance Maps

Apart from the generative use of VAEs in design pipelines,

the learned latent design space can be used as a lower-

dimensional proxy of the higher-dimensional, original de-

sign space. Fig. 12 displays the latent representation color-

coded by each of the KPIs used during dataset generation.

Again, utilizing the two most active latent dimensions for vi-

sualization, this offers a natural interface for humans to un-

derstand and explore trade-offs.

The performance map displayed in fig. 12, learned by the

d = 4, β = 10−2 VAE, reveals, for instance, that actuation

efficiency Ract and fairing drag ∆CD,fairing act adversely.

Designs with lower ∆CD,fairing yield shallower hinge points,

resulting in configurations with less efficient load transfer to

the actuator in the specific use case of our work.

3.3. Model Temperature

To increase the flexibility of VAEs as intermediaries between

designer and kinematics pipeline, the model temperature is

proposed, inspired by large language models. It is intended

to enable designers to request either a larger variance in

model outputs, i.e., the model is more "creative", or lower

variance, i.e., the user is more certain about the provided ref-

erence input and desires only little diversity. To incorporate

the temperature T into the generative process, the reparam-

eterization trick proposed by Kingma and Welling [5] was

extended to scale posterior standard deviation by T .

Low temperature T ∈ [0, 1) can be used to enforce more de-

terministic model behavior, whereas high temperature T ∈
(1,∞) can be used to enforce higher variance in generated

designs. The parameter was set to T = 1.0 during model

training.

To investigate its effect, a temperature sweep was con-

ducted across values T = [0.5, 1.0, 2.0, 3.0, 5.0, 8.0]. The

performance target from section 3.1.2 served as the refer-

ence input, based on which the posterior was inferred, and
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(a) (d = 4, β = 10
−2)

(b) (d = 3, β = 10
−2)

FIG 10. ADHF designs generated with each configuration. A reference design option x was fed to each model, representing
low-density feature values.

1000 samples were drawn. Fig. 13 displays kernel density

estimates of the sample distributions and corresponding

ADHF designs for a subset of temperatures.

For T = 0.5, the posterior standard deviation is halved with

respect to the default temperature T = 1.0, causing a con-

centration of samples within a smaller area. Synthesized

designs show high similarity with minimal variance. The

temperature can be arbitrarily increased, corresponding to a

broader exploration of the latent design space. For instance,

at T = 5.0, the samples span approximately one-third of the

latent space, yielding a large variety of designs. It is im-

portant to note that the effect of model temperature is not

universal, but may vary between model configurations and

inputs. However, obtaining a quick overview of the temper-

ature effect, as shown in fig. 13, is computationally inexpen-

sive for this model size and can be computed in a fraction of

a second to set the desired level of design diversity before

the computationally expensive post-processing steps.

3.4. VAE vs. Conventional DoE

The final step of this work was a comparative analysis be-

tween the proposed VAE-based design pipeline and a con-

ventional DoE-based pipeline. The conventional approach

is based on Sobol’ sampling, rather than a generative model.

A global and a local design space exploration scenario were

considered for the comparison.

3.4.1. Global Exploration

In the first scenario, 128 design samples were generated

within the global design space (see tab. 1) with both ap-

proaches. The VAE pipeline was provided with a represen-

tative design containing the mean value of each feature’s

range and a temperature setting of T = 6.0.

Fig. 14 shows the distributions of feature values explored

with either method, as well as the KPIs of corresponding

ADHF designs. While the conventional DoE method yields

a uniform distribution across the design space, the VAE-

generated samples cluster in high-interest regions. Regard-

ing KPIs, most VAE-generated designs exhibit acceptable

Ract and ∆CD,fairing below their respective constraint value.

However, a total of 45.3% of the designs violate any one con-

straint, with 42.2% of these violations attributed to H12,max.

As for the conventional pipeline, a substantial 82.0% of de-

signs violate any one constraint, rendering the majority of

designs invalid. While violations of the actuator efficiency

constraint constitute a small fraction (8.6%), the majority

of violations are attributable to the fairing drag constraint

(39.8%) and the separation tendency (72.7%).

3.4.2. Local Exploration

In the second scenario, the quality of designs produced

through local design space exploration was compared. The

target performance design scenario (see section 3.1.2)

served as the reference design for both approaches. VAE
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(a) (d = 4, β = 10
−2)

(b) (d = 3, β = 10
−2)

FIG 11. ADHF designs generated with each configuration. A reference design option x was fed to each model, representing a
performance target.

temperature was set to T = 2.0 in this case and the design

space for the conventional DoE was defined as ±10% of

the full feature range (see tab. 1) relative to the reference

input, resulting in the feature distributions shown in fig. 15.

While the conventional DoE draws samples uniformly

around the reference value, the VAE tends to generate

designs with larger target gaps and flap angles. The perfor-

mances of ADHF designs generated with both approaches

differ specifically for H12, for which all violations occurred.

A total of 31.3% of designs generated with Sobol’ sampling

and 8.6% of the VAE-generated designs violate the H12

constraint. This underlines that these two KPIs are con-

siderably more predictable and change smoothly across

feature values. Conversely, the underlying processes

determining separation behavior are far more complex and

depend on feature interactions. In such cases, the VAE’s

advantage lies in its ability to learn these relationships

from the training data distribution, thereby producing fewer

invalid designs.

The previous comparison demonstrates the fundamental dif-

ference between conventional and data-driven design space

exploration. The VAE performs exploration within a latent

space that represents the data manifold of the training data,

inherently focusing on favorable designs. Consequently, it

is significantly less prone to generating invalid designs, al-

though it requires time-consuming training and evaluation.

4. CONCLUSIONS

This work presented a generative, data-driven pipeline for

aircraft flap kinematics design, demonstrating the applicabil-

ity of VAEs in capturing complex design dependencies and

efficiently generating diverse candidate designs. Compared

to conventional DoE, the VAE-based approach enables

more efficient exploration of the design space, supports

intuitive visualization through latent performance maps,

and allows designers to tune solution diversity with model

temperature. These contributions highlight the potential

of generative models to accelerate preliminary design and

improve cross-disciplinary communication in early stages.

Future research may focus on scaling and adapting the

framework to increase fidelity and design freedom. This

could include incorporating additional KPIs (e.g. take-off

performance), adding shape parameters (e.g. flap and

spoiler chords), and expanding the approach to other rele-

vant kinematics types (e.g. track mechanisms). Conditional

generative models (e.g., CVAEs) could be employed to

guide sampling based on wing section characteristics (e.g.

spanwise position), while surrogate models may address

the current KPI evaluation bottleneck and enable real-time

exploration.

The long-term vision is to move beyond sectional flap kine-

matics towards full 3D layouts, integrating multiple flaps and

leading-edge devices within a conditional generative frame-

work. Although this raises challenges related to data re-
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quirements and computational effort, the efficiency gains of

generative models are expected to become increasingly de-

cisive as design spaces grow. Ultimately, this work provides

a first step for generative modeling in flap kinematics de-

sign, laying the foundation for broader adoption of machine

learning in overall aircraft design.

Contact address:

antonschreiber99@gmail.com

FIG 12. Latent performance maps: Dataset encoded into the two most active latent variables, color-coded by each of the KPIs.

FIG 13. Effect of the model temperature on sampled representations and generated designs.
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FIG 14. Comparison of the feature and KPI distribution produced with a conventional DoE (Sobol’ sampling) and with a VAE for
global exploration.

FIG 15. Comparison of the feature and KPI distribution produced with a conventional DoE (Sobol’ sampling) and with a VAE for
local exploration.

Deutscher Luft- und Raumfahrtkongress 2025

11©2025



References

[1] Peter K. C. Rudolph. High-lift systems on commercial

subsonic airliners. Technical report, National Aeronau-

tics and Space Administration, 1996.

[2] Jochen Wild. High-Lift Aerodynamics. CRC Press,

2022.

[3] Dirk Franke. Multidisciplinary Design of High-Lift Sys-

tems. PhD thesis, 2019.

[4] Parth Kumar and Brian J. German. Optimization of

high-lift systems at takeoff conditions subject to kine-

matic constraints. Journal of Aircraft, 59(4):1098–

1103, 2022.

[5] Diederik P. Kingma and Max Welling. Auto-encoding

variational bayes, 2013.

[6] Andrew J. Lew and Markus J. Buehler. Encoding and

exploring latent design space of optimal material struc-

tures via a vae-lstm model. Forces in Mechanics,

5:100054, 2021.

[7] Sneha Saha, Stefan Menzel, Leandro L. Minku, Xin

Yao, Bernhard Sendhoff, and Patricia Wollstadt. Quan-

tifying the generative capabilities of variational autoen-

coders for 3d car point clouds. In 2020 IEEE Sym-

posium Series on Computational Intelligence (SSCI),

pages 1469–1477, 2020.

[8] Sneha Saha, Leandro L. Minku, Xin Yao, Bernhard

Senhoff, and Stefan Menzel. Exploiting linear inter-

polation of variational autoencoders for satisfying pref-

erences in evolutionary design optimization. In 2021

IEEE Congress on Evolutionary Computation (CEC),

pages 1767–1776, 2021.

[9] Sneha Saha, Thiago Rios, Leandro L. Minku, Bas Vas

Stein, Patricia Wollstadt, Xin Yao, Thomas Back, Bern-

hard Sendhoff, and Stefan Menzel. Exploiting genera-

tive models for performance predictions of 3d car de-

signs. In 2021 IEEE Symposium Series on Computa-

tional Intelligence (SSCI), pages 1–9, 2021.

[10] S. Saha, L. L. Minku, X. Yao, B. Sendhoff, and S. Men-

zel. Exploiting 3d variational autoencoders for interac-

tive vehicle design. Proceedings of the Design Society,

2:1747–1756, 2022.

[11] Xu Wang, Weiqi Qian, Tun Zhao, Hai Chen, Lei He,

Haisheng Sun, and Yuan Tian. A generative design

method of airfoil based on conditional variational au-

toencoder. Engineering Applications of Artificial Intelli-

gence, 139:109461, 2025.

[12] Shrinath Deshpande and Anurag Purwar. Computa-

tional Creativity Via Assisted Variational Synthesis of

Mechanisms Using Deep Generative Models. Journal

of Mechanical Design, 141(12):121402, 2019.

[13] Daniel Reckzeh. Multifunctional wing moveables: De-

sign of the a350xwb and the way to future concepts. In

Proceedings of the 29th Congress of the International

Council of the Aeronautical Sciences, 2014.

[14] I.M Sobol’. On the distribution of points in a cube and

the approximate evaluation of integrals. USSR Com-

putational Mathematics and Mathematical Physics,

7(4):86–112, 1967. ISSN: 0041-5553.

[15] J. Angeles and S. Bai. Kinematics of Mechanical Sys-

tems: Fundamentals, Analysis and Synthesis. Mathe-

matical Engineering. Springer International Publishing,

2022.

[16] Hanfried Kerle, Burkhard Corves, and Mathias

Huesing. Getriebetechnik. Springer Vieweg Wies-

baden, 2015.

[17] European Union Aviation Safety Agency. Certification

specifications and acceptable means of compliance for

large aeroplanes (cs-25). European Union Aviation

Safety Agency, 2023.

[18] J. Gordon Leishman. Introduction to Aerospace Flight

Vehicles. Creative Commons, 2024.

[19] Carl Doersch. Tutorial on variational autoencoders,

2021.

[20] Kevin P. Murphy. Probabilistic Machine Learning: Ad-

vanced Topics. MIT Press, 2023.

[21] Christopher M. Bishop. Pattern Recognition and Ma-

chine Learning (Information Science and Statistics).

Springer, 1 edition, 2006.

[22] Irina Higgins, Loïc Matthey, Arka Pal, Christopher P.

Burgess, Xavier Glorot, Matthew M. Botvinick, Shakir

Mohamed, and Alexander Lerchner. beta-vae: Learn-

ing basic visual concepts with a constrained variational

framework. In ICLR (Poster). OpenReview.net, 2017.

[23] Adam Paszke, Sam Gross, Francisco Massa, Adam

Lerer, James Bradbury, Gregory Chanan, Trevor

Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,

Alban Desmaison, Andreas Kopf, Edward Yang,

Zachary DeVito, Martin Raison, Alykhan Tejani,

Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Jun-

jie Bai, and Soumith Chintala. Pytorch: An imperative

style, high-performance deep learning library. In Ad-

vances in Neural Information Processing Systems 32,

pages 8024–8035. Curran Associates, Inc., 2019.

[24] Takuya Akiba, Shotaro Sano, Toshihiko Yanase,

Takeru Ohta, and Masanori Koyama. Optuna: A next-

generation hyperparameter optimization framework. In

Proceedings of the 25th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining,

2019.

[25] James Lucas, George Tucker, Roger Grosse, and Mo-

hammad Norouzi. Don’t blame the elbo! a linear vae

perspective on posterior collapse, 2019.

Deutscher Luft- und Raumfahrtkongress 2025

12©2025


	Introduction
	Methodology
	Design Parameterization
	Dataset Generation with Engineering Constraints
	Design of Experiment
	Kinematics Synthesis and Optimization
	Actuator Efficiency
	Fairing Drag
	Separation Tendency
	Post-Processing

	Variational Autoencoder of Design Options
	Latent Space Analysis

	Results
	Design Generation
	Design Target
	Performance Target

	Latent Performance Maps
	Model Temperature
	VAE vs. Conventional DoE
	Global Exploration
	Local Exploration


	Conclusions



