
DATA MANAGEMENT FOR QUALITY ASSURANCE IN SEMI-AUTOMATED
PROCESSES

M. Vistein, D. Nieberl, P. Kaufmann, A. Buchheim
German Aerospace Center (DLR), Institute of Structures and Design,

Am Technologiezentrum 4, 86159 Augsburg, Germany

Abstract

Data acquisition, storage and evaluation is a key requirement for quality assurance in the aircraft industry. In this
paper, an approach using the software “shepard” is shown. The exemplary process contains of many manual or
semi-automated steps; therefore a graphical user interface has been developed that assists the user in providing all
necessary data and linking it with other data that can be acquired automatically. The practicability of this approach
has been evaluated within the manufacturing process of a carbon-fiber reinforced plastics part for a helicopter.

Keywords
data management; quality assurance; automation; graphical user interface

NOMENCLATURE

Abbreviations

API Application Programming Interface

CFRP Carbon-Fiber Reinforced Polymer

JSON JavaScript Object Notation

MES Manufacturing Execution System

REST Representational State Transfer

SCADA Supervisory Control and Data Acquisition

1. INTRODUCTION

In aircraft industry, the certification of components is a
crucial part of production. Quality assurance measures
as well as information on materials and methods need
to be monitored and tracked. Therefore, large amounts
of data need to be captured, stored and referenced in
order to fulfill admission criteria. As part of the project
“NEUTRON”, data acquisition and -management based
on the software tool “shepard” has been evaluated.
The “shepard” (A storage for heterogeneous product and
research data) software stack has been developed at
the Institute for Structures and Design and aims at pro-
viding an integrated system for storing and linking all
kinds of manufacturing data. This includes automatically
acquired continuous data stored in time series (e.g. tem-
perature) as well as discontinuous data like data sheets,
photographs, etc. In order to access all data, a hierarchi-
cal representation of the product and process is formed
using virtual data objects, and additional data like time
series or binaries are referenced to allow for a precise
attribution.

Shepard itself provides an application programming inter-
face (API) and a generic web-based interface. The API
can be used by automated processes to access all data
stored in shepard. If a process is completely automated
and centrally controlled (usually using a manufacturing ex-
ecution system), this is an easy way to gather all incoming
data. Using shepard in an almost completely automated
process has been demonstrated in [1]. Similar to indus-
trial production lines, the NEUTRON project consists of
a large amount of process steps that are a mixture of
automated, partly automated and even completely man-
ual processes. While the acquisition of continuous data
can still be automated, many additional data can only be
provided by the process experts during manufacturing.
To facilitate this process, as part of NEUTRON, a graphi-
cal user interface (GUI) has been developed. This GUI
allows the process experts first to design the overall hi-
erarchical structure of the process using a graph-based
interface. An important part of this step is the definition of
required data, e.g. data sheets, inline quality assurance
measures, NDT data or facility configurations. The goal is
to provide both traceability for validation and verification
purposes, as well as a basis for future improvements of
the process.
Once the process has been defined, the relating structure
is created in shepard. To support the manufacturing team,
a wizard like GUI is presented that asks for all relevant
manual input. By tracking the start and end times of each
process step, also an automatic reference to continuously
retrieved data is created.
Section 2 provides more technical details of the shep-
ard data management system, and in section 3 the new
shepard Process Wizard is introduced. In section 4 the
shepard Process Wizard is put into context within the
project NEUTRON are shared in section 4, and the paper
is concluded in section 5.

1

Deutscher Luft- und Raumfahrtkongress 2025
DocumentID: 650226

doi: 10.25967/650226©2025

https://doi.org/10.25967/650226


2. SHEPARD

The shepard project is being developed at the Institute of
Structures and Design at the German Aerospace Center
(DLR) and aims at providing an integrated system for
storing and linking all kinds of manufacturing data [2,3].
There are several key concepts in shepard which are
used to structure the data:
• Collections are used to group data on the top level

and represent e.g. a project, a product, etc.
• DataObjects are the basic organizational element

in shepard. Every DataObject belongs to exactly
one Collection, and DataObjects can have rela-
tions (parent/child, predecessor/successor) to other
DataObjects.

• Containers store the real data. There are containers
for time series (data values stored with a timestamp),
arbitrary binary files or structured data (generic data
that can be represented as a JSON object).

• References link from DataObjects to data stored, e.g.
to a certain file stored in a file container, to a time span
in a time series, etc.

The basic interface to shepard is a REST API. Custom
applications can use it to store and retrieve data from/to
shepard, and to create all references as necessary. Shep-
ard provides automatically generated client implementa-
tions for some commonly used programming languages,
and further client implementations can be generated us-
ing the OpenAPI project.
Besides the API, a web-based frontend is provided that
allows the user to perform many basic operations such
as creating or deleting elements.

3. SHEPARD PROCESS WIZARD

If a production process can be performed completely au-
tomatic, the integration of shepard as data storage is
comparably simple. The process is usually controlled
centrally by a SCADA or MES system. These systems
can be extended with an interface to the shepard API
in a way that the required data structures (Collections
and DataObjects) are created on-the-fly as needed. Sen-
sor systems can be automatically configured to provide
measurements as time series and references with appro-
priate start and end times can be generated by central
controller.
In research applications – but also in some production
environments – not all steps can necessarily be fully
automated. In a mixture of automated and manual pro-
cess steps, no single central control unit is available that
could be responsible for maintaining the data structures
in shepard.
Manually creating a data structure in shepard – either
using the API or the web frontend – is a tedious task, in
particular if the same structure is needed several times,
e.g. for multiple tasks. Therefore, the shepard Process
Wizard has been created which provides a graphical user
interface for the process definition as well as for the later
(multiple) process executions [4].
In section 3.1 the application for process definition is
described, and in section 3.2 the process execution.

FIG 1. Graphical editor for definition of process step types
and the required data for each type.

3.1. Process Definition

In the process definition step, a template for the process
is created, which then can be applied for each part that
is produced. In order to define the process, two indepen-
dent definitions must be done:
1) Which data must be acquired in each type of process

step (see section 3.1.1)
2) Which process steps are necessary, and in which

order (see section 3.1.2)
Both definitions have been separated, because it is of-
ten required to record the same set of data for different
steps of a production process, therefore the definition of
required data can be reused.

3.1.1. Required Data

In order to model a process, types of process steps need
to be identified. A type of process step in the shepard
Process Wizard is defined by the set of data that needs
to be acquired, stored or referenced for a certain process
step. While it is possible that every process step has
its own type, usually several process steps can share
a common type. The definition of required data can be
done using a graphical editor as seen in fig. 1.
For each process step type, a number of data items can
be specified. For each item specified, the user will be
asked to provide input later during the process execu-
tion (see section 3.2). For each item, a concrete data
type must be specified. Besides common types such as
String, Integer or Float, also binaries are possible
(e.g. to require the user to upload a PDF file). Further-
more, also time series ca be selected as data type which
will allow the user to link the execution of a certain pro-
cess step with a set of data automatically captured in a
time series. Each item can have a flag marking it as re-
quired which will be highlighted during execution. It is also
possible to allow an item being used multiple times, e.g. if
the user should be allowed to upload multiple documents
for a certain item.

3.1.2. Process Flow

In order to represent the logical structure of a production
process, DataObjects are used in shepard. DataObjects
can be linked to each other using parent/child and prede-
cessor/successor relations. Shepard itself handles these

2

Deutscher Luft- und Raumfahrtkongress 2025

©2025



FIG 2. Graphical editor for modeling of process flow.

relations as a directed graph and does not place any
constraints on these relations, i.e. cyclic connections are
allowed. For the shepard Process Wizard however it
has been decided to restrict the modeling to an acyclic
directed graph with a single root node (a tree-like struc-
ture).
The shepard Process Wizard provides a graphical editor
for modeling of the process flow (see fig. 2). Each pro-
cess step is represented as a box which can be freely
arranged on the work space. Connections can be cre-
ated by dragging lines between the boxes. Two types of
connections can be created:
• Parent/child relations are connecting from the top and

bottom sides of the process step box and create a
hierarchical order of process steps. There must be a
single root node which has no parent that represents
the whole process. Children can be e.g. different parts
of which a work piece is made of, or different sequential
sub-process steps.

• Predecessor/successor relations are connecting at
the left and right side of the process step boxes. These
relations define the order of executions for multiple
process steps that are on the same level, hence only
process steps that have the same parent step can be
connected using these relations. If two process steps
have the same parent but no predecessor/successor re-
lation, the order of execution of both steps is undefined.
Cyclic relations are not allowed.

For each process step, a process step type as defined in
section 3.1.1 must be selected. This defines which data
is collected for each process step. Every process step
may collect data, not only the leaf steps. However, it is

also possible to define step types that do not collect any
data (e.g. for the high-level steps).

3.2. Process Execution

The model that is created as described in section 3.1 is
not immediately mapped to a shepard structure. While
the model is still under development, it is stored as struc-
tured data consisting of two JSON documents. One is
representing the logical structure of the process, the other
one the graphical aspects (position of the boxes, connec-
tions, etc.). Storing the structure directly by means of
DataObjects would be unnecessarily difficult to maintain.
The execution of a process is done in two steps:
1) Creating all necessary structures within shepard to

represent the model created.
2) Guiding the user through the process and supporting

the provision of necessary process data.

3.2.1. Initial Creation of Structures

In order to start with the execution of a process, an in-
stance (called run) of the model must be created. In a
first step, the validity of the model is checked. While the
graphical editor prevents the user from creating many
invalid connections such as cycles, not all properties can
be enforced there, e.g. the requirement for a single root
node can only be checked during instantiation.
Once the validation was successful, the model is trans-
ferred to shepard. Every process step in the model is rep-
resented by a DataObject, and the relations are created
using the built-in features of shepard for linking DataOb-
jects. At the moment, no further changes to the model

3

Deutscher Luft- und Raumfahrtkongress 2025

©2025



FIG 3. Graphical user interface for providing necessary pro-
cess data.

are possible once a run has been created. Allowing
modifications would require to track the modifications the
user performs and trying to apply them to the existing
structures. While this might be easily possible for some
changes such as simply adding new steps, this can be
tricky for deletions or other modifications. If the run has
already been filled with data, this could even lead to data
loss when a node is inadvertently deleted. Creating a new
run with a modified model however is always possible.

3.2.2. Gathering user data

One of the most important features of the shepard Pro-
cess Wizard is guiding the user through the process.
While the creation of the model can be done “offline” at
the office, this part is intended being performed “online”
in the lab or on the shop floor. The user is provided with
a graphical user interface as it can be seen in fig. 3.
On the top of the window, the process step can be se-
lected. The order of the process steps is determined by
the model and done using a depth-first search algorithm,
honoring the order of children defined using the prede-
cessor/successor relation. If no such relation is defined,
the order of children is undefined, therefore a random
ordering is chosen. Using the Next and Back buttons,
the user can navigate through the whole process. A direct
selection of any process step is also possible.
Directly below the step selection, some information about
the process step is displayed. This includes a description
that can be specified by the process designer, as well as
a direct link to the shepard frontend for the user, if a low-
level access to the DataObject is wanted. Furthermore,
times of the execution of this process step are displayed.
Using the buttons Start step and Stop step, the cur-
rent time can be saved either as start- or end-time for a
process step. If a process needs to be interrupted, it can
also be restarted later, leading to multiple execution times.
The start and stop times are used for two purposes:
1) Information for the user, in particular to relate to the

production process.
2) If time series data is available (e.g. by automatic

recording of data of machines) the appropriate ref-

erences will be created automatically. The references
include the periods the step was active and therefore
allow for an easy filtering of long running time series.

In the lower part of the window, the user can input all
required data as it has been defined in the process type
definition (cf. 3.1.1). Depending on the configured data
type, the user is offered a field to enter text, numbers,
a checkbox for Boolean values or an upload dialog to
search for files for binary data. If the definition allows for
it, the user can add additional lines to provide multiple
items for the same field. Required fields are highlighted.
Sometimes – particularly in research applications – it
is necessary to redo a whole production step, without
starting a completely new process. Using the button
Redo step, it is possible to create a new instance of
the selected step (and its children) which can be filled
with new data. To achieve this, a new DataObject, and
recursively new DataObjects for all children, are created.
The previous instances remain stored in shepard such
that all data previously entered remains accessible.

4. SHEPARD PROCESS WIZARD WITHIN THE CON-
TEXT OF THE PROJECT NEUTRON

Development of shepard Process Wizard was carried out
within the project NEUTRON. In the project, DLR aimed,
among other objectives, to manufacture a demonstrator
of a helicopter engine deck for a hybrid electric propulsion
system.
The engine deck is an integral structural element of the
upper fuselage. This platform-like structure provides the
mounting interface for the engines via dedicated struts
and brackets and establishes the primary load path to
the main fuselage. It transfers operational loads from the
engines into the helicopter’s primary airframe.
The demonstrator was realized in a new design made
of carbon fiber reinforced plastic (CFRP). To this end,
a semi-automated, quality assured manufacturing pro-
cess was developed and implemented, encompassing
the production of subcomponents (e.g. longerons and
deck panel) and their joining into the final assembly. The
process employed robot assisted dry fiber patch preform-
ing combined with vacuum infusion using the VAP pro-
cess. Final assembly was performed by riveting and a
novel boltless joining method. Inline quality assurance
was integrated into certain process steps, such as fiber
angle measurement for textile cuttings. Figure 4 shows
an overview of the implemented manufacturing process.
In order to map an industry-oriented process, the objec-
tive was to document all relevant information along the
entire process chain, from the semi-finished product to
the demonstrator, in order to ensure quality. Additionally,
step-by-step guidance for manual operations was pro-
vided and automatic data logging for automated process
steps enabled.
An example for a semi-automated process step was infil-
tration and curing of the part. Data like resin temperature,
flow times, dielectric analysis of viscosity and similar was
directly fed into the shepard database. Additionally, the
graphical user interface of shepard Process Wizard as de-
scribed in 3.2.2 provided the engineer with the possibility

4

Deutscher Luft- und Raumfahrtkongress 2025

©2025



Sheet
cut & pick-up

Sheet transport
to robot cell

Sheet stacking
Foam core placing

Inline-QA
sheet position

fiber angle

Sheet draping
(diaphragm)

Binder activation

Vacuum bagging
Infusion
Curing

Trimming
NDT (components) 

ultrasound (LEA)
shape accuracy

Assembly:
positioning

joining

NDT (structure)
ultrasound (LEA)

thermography

Data management (shepard Process Wizard)

Data management (shepard Process Wizard)

FIG 4. Manufacturing process of a CFRP helicopter engine deck implemented in Project NEUTRON

to log start and stop times, upload photo documentation
of the setup, or add notes of unexpected occurrences.

5. CONCLUSION

The project NEUTRON established a complex manufac-
turing process with several heterogeneous steps which
required a variety of data acquisition methods. The shep-
ard Process Wizard allowed the creation of the data
structure in shepard, including relations and references,
in an intuitive and user-friendly way; thereby lowering
the entry level for the application of the database without
the need for extended training. Furthermore, the addi-
tion of manual steps enabled the use of the interface as
an advanced possibility to document progress, record
deviations or collect individual remarks. It is one more
step towards fully automated data acquisition, without
sacrificing the flexibility to amend the process with un-
foreseen additions. Short term communication with the
test users yielded real time feedback from the manufac-
turing process; requested additional functionality or bug
fixes could be implemented promptly. In conclusion, the
close collaboration between developers and users offered
an opportunity to test and improve during actual project
operation, and help raise acceptance of the new tool.

Acknowledgment

Parts of this work were funded by the German Federal
Ministry for Economic Affairs and Climate Action in the
frame of the LuFo VI-2 project NEUTRON under the fund-
ing indicator 20M2114C.

Contact address:

michael.vistein@dlr.de

References

[1] Michael Vistein, Monika Mayer, Manuel Endraß,
and Frederic Fischer. Single source of truth: In-
tegrated process control and data acquisition sys-
tem for the development of resistance welding of
cfrp parts. In 20th International Conference on Infor-
matics in Control, Automation and Robotics, ICINCO
2023, volume 1, pages 592–599. SciTePress, 2023.
DOI: 10.5220/0012161500003543.

[2] Tobias Haase, Roland Glück, Patrick Kaufmann, and
Mark Willmeroth. shepard - storage for heteroge-
neous product and research data, July 2021. Lan-
guage: en. DOI: 10.5281/ZENODO.5091604.

[3] Florian Krebs, Mark Willmeroth, Tobias Haase, Patrick
Kaufmann, Roland Glück, Dominik Deden, Lars
Brandt, and Monika Mayer. Systematische Erfas-
sung, Verwaltung und Nutzung von Daten aus Experi-
menten. In Deutscher Luft- und Raumfahrtkongress
2021. Deutsche Gesellschaft für Luft- und Raumfahrt,
September 2021. DOI: 10.25967/550315.

[4] Michael Vistein, Patrick Kaufmann, and Tobias
Haase. shepard Process Wizard, Sept. 2025.
DOI: 10.5281/zenodo.17119446.

5

Deutscher Luft- und Raumfahrtkongress 2025

©2025

mailto:michael.vistein@dlr.de
https://doi.org/10.5220/0012161500003543
https://doi.org/10.5281/ZENODO.5091604
https://doi.org/10.25967/550315
https://doi.org/10.5281/zenodo.17119446

	Nomenclature
	Introduction
	Shepard
	shepard Process Wizard
	Process Definition
	Required Data
	Process Flow

	Process Execution
	Initial Creation of Structures
	Gathering user data


	Shepard Process Wizard within the context of the Project Neutron
	Conclusion

