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Abstract

Reliable and robust aircraft design requires accurate understanding of aerodynamic behavior across the full flight enve-
lope to predict mission performance, as well as stability and control characteristics. This work demonstrates the potential
of automated, high-fidelity dataset-based shape optimization of aircraft for mission-level performance evaluation, using a
simple yet realistic test case: the Optimization Test Interceptor with Fan (OTIFAN) configuration. To ensure a viable aircraft
design, lower-fidelity methods are incorporated for the disciplines of mass properties, flight mechanics, and structural anal-
ysis. Three optimization strategies have been implemented into an automated framework: Grid search (GS) for framework
setup and validation, gradient-based optimization (GO) for efficient local optimization and Bayesian optimization (BO) for
global, gradient-free optimization. The strategies are applied across two objective functions, illustrating the applicability of
the framework on geometric and mission profile optimizations.
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§ Control deflection angle [°] ¢ Control

! Factor [ s Perturbed value
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H Altitude (m] me Increment
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m Mass [kg] ean Mean
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mw Mission weight [] ¢ Target

n Load factor lq] w Wing
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s Sensitivity [pts/m] zb Z-direction in body-fixed coordinates
SEP Specific excess power [mis] 29 Z-direction in earth-fixed coordinates
t Time [s]

u Utility [-]
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Acronyms

BO Bayesian optimization

CAD Computer-aided design

CFD Computational fluid dynamics

CPU Central processing unit

EDF Electric ducted fan

El Expected improvement

FOM Figure of merit

GO Gradient-based optimization

GS Grid search

HPC High-performance computing

LCB Lower confidence bound

MPI Maximum probability of improvement
OTIFAN Optimization Test Interceptor with Fan
PLA Polylactic acid, plastic material
RANS Reynolds-averaged Navier-Stokes
UAV Unmanned aerial vehicle

1. INTRODUCTION

Aircraft design is an inherently multidisciplinary process,
requiring accurate treatment of all relevant disciplines to
achieve viable configurations [1]. This work focuses on
high-fidelity treatment of aerodynamics while introducing
low-fidelity treatment of mass properties, flight performance,
flight mechanics and structural analysis.

In addition to experimental methods for assessing aerody-
namic characteristics, various computational fluid dynamic
(CFD) methods have emerged, with a wide span of fidelity
and associated computational cost. Reynolds-averaged
Navier-Stokes (RANS) CFD simulations are currently
considered the state of the art high-fidelity method for aero-
dynamic problems. The application to complex geometries
such as full aircraft configurations often provides sufficiently
accurate data even in flow fields featuring non-linear phe-
nomena such as separated flow [2, 3].

State-of-the-art computational hardware enables the execu-
tion of quasi-steady RANS simulations for complete aircraft
configurations within feasible industrial timeframes. Such
multi-point analyses typically involve selecting a set of flow
conditions — such as Mach number Ma, angle of attack
«, and control settings including control surface deflections
and engine parameters — thus covering only a subset of
the flight envelope. However, a priori assumptions about
the flight conditions of interest can introduce significant
uncertainties in a design process as many aerodynamic
characteristics are difficult to predict [4].

Truly robust aircraft design requires knowledge of the
aerodynamic behavior across the full range of operating
conditions, to ensure improved flight performance whilst
maintaining adequate stability and control characteristics.
Achieving this coverage typically necessitates a large num-
ber of simulations including all relevant flow conditions and
control settings, from which the quasi-steady aerodynamic
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integral loads are extracted and compiled into an aerody-
namic dataset.

Combining high-fidelity aerodynamic datasets with informa-
tion from other disciplines — such as mass properties and
actuators — enables realistic mission-level performance
evaluations. This integrated approach supports more accu-
rate assessments of aircraft configurations and reduces the
risk in the design process.

The generation of RANS-based aerodynamic datasets has
recently become feasible in industrial settings [5]. The
computational process typically requires several weeks of
wall-clock time on currently available high-performance
computing (HPC) systems, a marked improvement com-
pared to traditional dataset generation processes based
primarily on experimentally generated data.

These recent developments in mass production of numer-
ical data have made the introduction of robust automatic
optimization strategies possible. The computational cost
of optimization is primarily driven by the dimensionality of
the design space and the modality of the objective func-
tion [6]. The dimension in a shape optimization problem is
equivalent to the number of design parameters, while the
modality is characterized by the number of the minima in the
objective function. For automated dataset-based aircraft
shape optimization, it is estimated that in the order of 3-20
parameters will suffice for the major design drivers, with
only a few dominant modes. This is in agreement with other
recent works [7]. Automated optimization is expected to
yield higher-performing designs while significantly reducing
manual design effort compared to state-of-the-art aircraft
design processes.

Continuous advancement of HPC hardware and numerical
algorithms render the routine application of high-fidelity
dataset-based aircraft design optimization a feasible goal
for the coming decade. However, currently very few aircraft
design tools fully exploit high-fidelity for the optimization of
new aircraft configurations [8].

This work demonstrates the potential of leveraging high-
fidelity CFD simulations in an efficient and robust framework
to enable high-fidelity dataset-based aerodynamic shape
optimization for future aircraft configurations.

2. METHODOLOGY

To develop and demonstrate the proposed optimization
framework, a simplified yet representative test case is
selected. By staying within the subsonic regime and a
limited angle-of-attack range the test case enables fast and
efficient development, whilst maintaining physical relevance
across the complete flight envelope. The configuration
includes key components such as wings, control surfaces
and a propulsion system, capturing all essential aerody-
namic interactions.

The shape design parameters cover the wing position, the
wing span, the wing root chord and the tail span. The
fuselage geometry is held constant, reflecting a common
industrial scenario where the propulsion system is prese-
lected prior to aerodynamic optimization. Further details on
the test case are presented in Chapter 3.1.

A Python-based framework has been developed to optimize
parametric computer-aided design (CAD) models by evalu-
ating high-fidelity aerodynamic datasets, using one of the
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three strategies implemented: Grid search (GS), gradient-
based optimization (GO) and Bayesian optimization (BO).
Figure 1 provides an overview of the steps involved in one
optimization iteration of the framework.

Each iteration begins by retrieving templates (step 0) for
subsequent processes, including the CAD model, mesh
generation scripts, and scripts required for the dataset
pipeline setup and processing. Following successful ge-
ometry adaptation (step 1) a new mesh is generated (step
2) and passed to the dataset pipeline (step 3), limiting
geometrical changes only by the allowable parameter range
of the parametric CAD model. The pipeline produces the
high-fidelity dataset, which is then evaluated by the objec-
tive function (step 4). Finally the parameter set for the next
iteration is selected according to the chosen optimization
strategy (step 5). This iterative process continues until the
predefined number of iterations is reached, pausing for
manual intervention if errors occur during any step.

Template retrieval (CAD, meshing, dataset pipeline)

Geometry generation (CATIA v5 in batch mode)

Mesh generation (Unstructured, hybrid, overset )

Dataset Pipeline (DLR TAU-Code, using RANS )

Objective computation (Custom Python function)

Next point selection (Optimization strategies: GS, GO, BO)

-eeeeea:

FIG 1. Iteration steps of the high-fidelity dataset-based shape
optimization framework.

To validate and verify the efficiency of the selected optimiza-
tion strategies, a linear surrogate model was constructed
using 20 design points obtained from a grid search over
three shape parameters and their corresponding objective
function values. This surrogate facilitates rapid evaluation,
enabling multiple optimization runs under various settings.
Such repeated testing aids in refining the optimization
methods and mitigating risks in subsequent computation-
ally expensive productive optimization iterations.

Two optimization strategies are examined for high-fidelity
dataset-based shape optimization for aircraft design:
Gradient-based optimization (GO) and Bayesian optimiza-
tion (BO).

GO is a local optimization approach that can be straightfor-
wardly implemented using finite differencing to approximate
the gradients. While computationally efficient, GO can be
sensitive to initial parameter values and prone to conver-
gence to local minima. These risks can be mitigated by
executing multiple GO runs in parallel, though at the cost of
reduced overall efficiency.

In contrast, BO is a gradient-free global optimization tech-
nique that employs probabilistic surrogate models, typically
Gaussian Processes, to efficiently explore the design space.
The Efficient Global Optimization algorithm presented by
Jones in 1998 [9] as one of the first implementations
advanced BO and stated its applicability for expensive
objective functions with moderate dimensionality, as of-
ten encountered in aerodynamic shape optimization [10].
However, Bayesian optimization is expected to require
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significantly more computational resources than a more
localized gradient-based optimization with a good starting
point, rendering its expected introduction to industrially
sized dataset-based optimizations to a later stage.

Both GO and BO have been applied to the validated test
case and associated objective functions to demonstrate the
feasibility of robust high-fidelity dataset-based optimiza-
tion for aircraft design. The optimization procedures yield
improved shape parameter sets for the test configuration
tailored to the design missions, derived from high-fidelity
datasets. These optimizations demonstrate the feasibility
of the high-fidelity dataset-based approach currently under
development.

3. TEST CASE

A simplified test case is used to demonstrate the dataset-
based optimization approach. Whilst requiring considerably
fewer resources than typical combat aircraft, most features
of the methodology can be analyzed in an efficient way using
this configuration.

3.1. Aircraft Configuration

Demonstration of the dataset-based high-fidelity optimiza-
tion framework is performed on the OTIFAN configuration
(Optimization Test Interceptor with Fan). It is an expend-
able, subsonic unmanned aerial vehicle (UAV), designed
for catapult launch and fast intercept missions against
low-flying subsonic targets.

The configuration features an axisymmetric fuselage that
houses a sensor head, batteries, control systems, and an
internally mounted electric ducted fan (EDF) propulsion
system. The wing has 5° incidence, while the all-movable,
rectangular V-tail is inclined at 45° dihedral. Wing and
tail use symmetric NACA 64-010 airfoils, which have been
modified to a trailing edge thickness of 1%. Key specifi-
cations and components of the OTIFAN configuration are
listed in Table 1.

A parametric CAD model of the configuration was con-
structed in CATIA V5, allowing for large variations in design
parameters for the wing and empennage as shown in
Figure 2. The full design space is parameterized using four
shape variables: wing position xy, wingspan by, wing root
chord ¢, w, and V-tail span bc¢.

Shape adaptation results in changed mass properties,
which are estimated via lower-fidelity methods. The mass
change of the components affects the center of gravity,
influencing the trimming as well as stability and control
characteristics of the configuration. The estimated mass
breakdown for the minimum span configuration — with
minimum wingspan and V-tail span — is provided in
Table 2.

3.2. Numerical Setup

The numerical setup used to evaluate the configuration’s
performance consists of a meshing routine, the CFD solver
configuration, the dataset definition and the objective
computation. Each of the components is detailed in the
following.

To solve the RANS equations, firstly the fluid domain has
to be discretized into cells. A mesh generator creates un-
structured, hybrid, vertex-centered dual cell grids by extrud-
ing prism layers from a tetrahedral surface mesh, which are
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FIG 2. Parameterized CAD model of the OTIFAN configuration
highlighting the design parameters and their respective

bounds.

TAB 1. OTIFAN configuration specifications.

Specification Value Unit
Altitude range 0 ... 2000 [m]
Mach range 0.05 ... 0.25 -]
Take-off mass ~3..~5 [kg]
Propulsion type Internal 90 mm EDF

Batteries 4x Li-Po 6S, 1.6 Ah @ 80C

Gross thrust 38 (static, uninstalled) [N]
Flight time 118 s]
Fuselage length 0.545 [m]
Fuselage max dia 0.180 [m]
Wing long. position  0.2...0.3 [m]
Wing ref. area 0.05 ... 0.20 [m?]
Wing root chord 0.060 ... 0.200 [m]
Wing tip chord 0.060 [m]
Wing span 0.5...2.0 [m]
V-tail span 0.175 ... 0.275 [m]

TAB 2. Estimated mass breakdown of the OTIFAN configura-

tion at minimum wing and tail span.

Component Mass Percentage
Fuselage 0.700 kg 23.3%
Sensors 0.280 kg 9.3%
Propulsion 0.370 kg 12.3%
Batteries 0.888 kg 29.6%
Servos 0.048 kg 1.6%
Wing 0.100 kg 3.3%
Tail 0.120 kg 4.0%
Payload 0.495 kg 16.5%
Total 3.000 kg 100%

then merged into a surrounding tetrahedral volume mesh.
Control surface deflections are handled efficiently via the
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Chimera approach [11] by modeling the surfaces as sub-
meshes that can be displaced and connected using interpo-
lation at runtime. High-curvature geometric features such
as leading and trailing edges are locally refined.

A mesh convergence study has been performed across four
mesh levels for a full dataset on three HPC nodes with 48
central processing units (CPUs) each. Starting from level 0
with approximately 3.5 - 10° nodes, the sources of the other
levels were scaled so that the next higher and lower level
corresponds to double and half the nodes, respectively. The
overall mesh resolution distribution was kept constant, re-
sulting in a cost doubling with each level increment. The
first prism layer height was chosen to ensure y™ < 1 and a
growth rate of 1.33 was applied to generate up to 30 prism
layers for accurate boundary layer capturing.

Mesh level -1 exhibited significant sensitivity in the control
power derivatives (see Figure 3), indicating insufficient grid
resolution. Mesh level 0 (see Figure 4), was selected for
the optimization runs due to its favorable balance between
computational cost and low sensitivity in integral coefficients
and control derivatives (see Figure 3), suggesting accept-
able grid independence.

ACy/AS [1irad]
o

FIG 3. Mesh convergence study showing mesh sensitivity of
pitch control power for the OTIFAN configuration.

a) L ) < ) i_x

FIG 4. Mesh used for the OTIFAN optimization showing the
farfield a) and details of the wing b), the fuselage c), the
wing tip d) and the V-tail e).

Once the fluid volume is discretized with adequate reso-
lution, the dataset pipeline calls the DLR TAU-Code [12]
to solve the compressible RANS equations. The aerody-
namic simulations are performed as transient RANS com-
putations with the dual time-stepping approach with an im-
plicit Backward-Euler scheme. Figure 5 shows a represen-
tative flow solution. The symmetry plane and the walls are
colored by the mean Mach number and the mean pressure
coefficient respectively.

The stagnation point at the sensor pod, as well as the wake
of the fuselage are clearly visible in the symmetry plane.
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FIG 5. Example flow field for the OTIFAN configuration: Con-
tour plot of mean Mach and surface pressure coefficient
on symmetry and viscous walls, respectively.

On the upper wing surface alongside the adjacent fuselage
hull the typical suction area in the forward half of the wing
chord is present. The tip of the control surface indicates
also a suction region as expected from the tip vortex. In
contrast, the aftbody and the engine exhaust indicate areas
of higher pressure due to the boat-tailing and boundary
condition respectively.

The aerodynamic dataset used to characterize the OTIFAN
configuration is built from the flow conditions and control set-
tings listed in Table 3. Reynolds and compressibility effects
are neglected due to low altitude and subsonic operation.
One complete dataset comprises of 30 RANS simulations
and linear interpolation is employed for fast and robust eval-
uation.

Parameter Symbol Values

Altitude H 0m

Mach Ma 0.25

Alpha @ [—2°, 0°, 2°, 4°, 6°, 8°]
Delta ) [-15°, —5°, 0°, 5°, 15°]

TAB 3. Dataset flow conditions and control settings.

In industrial applications the engine forces and moments are
usually introduced by employing an engine deck. In addi-
tion, appropriate boundary conditions have to be set at the
engine interfaces in the mesh, while the internal aerodynam-
ics are omitted from the CFD simulation. In the test case
presented here, a similar approach is used, where the EDF
propulsion is modeled by an engine deck and boundary con-
ditions generated by explicit simulations of the rotating fan
in the fuselage of the design as shown in Figure 6. Several
computations with varying onflow Mach numbers were per-
formed applying the Chimera overset mesh approach. It is
presently assumed that the optimizations are conducted at
maximum power, sea level. Given the limited angle of attack
range of the OTIFAN configuration, the effect of the angle of
attack on propulsion performance was neglected.

©2025

Cp TR | [

-3.0 -2.7 -24 -21 -18 -15 -12 -09 -06 -0.3 0.0 03 0.6 09

FIG 6. Cut view of transient RANS Chimera simulation with ro-
tating EDF used in the engine deck generation, showing
pressure coefficient on viscous walls.

4. OBJECTIVE FUNCTIONS

A critical part of any optimization is the definition of the ob-
jective function. The availability of a dataset covering the
entire flight envelope allows for the accurate evaluation of
objectives of direct interest in the design process of an air-
craft, including stability and control evaluation as well as the
simulation of entire design missions.

4.1. Obijectivel

The objective for the configuration is composed of two de-
sign missions weighted 4:1. The primary mission is a direct
intercept at target height H with initial launch from a cata-
pult as illustrated in Figure 7. The secondary mission rep-
resents a contingency scenario: an inverted intercept fol-
lowing a half-loop maneuver after an unsuccessful primary
intercept as shown in Figure 8.

I Start from launcher v v Targelt
Il.  Accelerate to V A
. ClimbtoH
IV.  Accelerate to V,,,
V. Intercept
H
n
| ]

Interceptor —

J Ground A\

FIG 7. Mission profile of the primary intercept mission.

The mission performance is rated based on figures of merit
(FOMs) and constraint penalties, which are scaled and
weighted, similarily to the approach by [13]. The FOM
values are scaled across three reference points corre-
sponding to 0, 100 and 200 mission points (pts), while the
constraint values are scaled across three reference points
corresponding to 105 %, 95 % and 0 %. Table 4 and 5 detail
the FOMs, the constraints, the respective scaling values
and the weights for the primary and secondary mission,
respectively.

The flight time for the primary mission is set to 80 % of the
total flight time and includes the launch from a catapult with
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I Half-loop to inverted Interceptor
II.  Accelerate to V,,,,
Il
lll.  Inverted intercept m 1
G Q)
Target A
H
Ground A\

FIG 8. Mission profile of the secondary intercept mission.

a rail length of 8 m. To add a 5% margin on stall speed,
the launch velocity is set to 1.05 Vg which is achieved by
constant acceleration starting at Vo = 0m/s, while the stall
speed Vs is evaluated from the dataset at trimmed level
flight with the lowest feasible velocity. To ensure structural
integrity during the catapult launch segment the axial load
factor is constrained to n;, < 15 g.

The climb segment is fixed to 80 % of the primary mission
time, where the climb is performed at the maximum rate of
climb ROC to maximize the altitude H at the end of the pri-
mary mission as specified in Equation Equation 1.

(1) H = ROC - 0.8% - tmas

The optimum ROC is determined by evaluating the dataset
for the highest value of the specific excess power SEP in
trimmed level flight, which is equivalent to the maximum
ROC. To compute the SEP in trimmed level flight, first
the trimmed dataset is evaluated for the SEP as specified
in Equation 2, in a second stage the results are then filtered
for level flight condition where n., = 1 and ng4 > 0.

) SEP =V - nay = ROC

The last 20 % of the primary mission time are allocated for
acceleration from the climb velocity to the terminal velocity
Vmaz, Which is evaluated from the dataset at trimmed level
flight, with the aim of maximizing the terminal impulse J.

TAB 4. FOMs and constraint of the primary mission including
scaling and weighting.

FOMs Scaling [0, 100, 200] pts Weight
H [500, 1000, 2000] m 3
J 3kg-[0.1,0.2,0.3] - 340 m/s 1
Constraints  Scaling [105,95,0] % Weight
Nab [0,10,15] g 4

The secondary mission utilizes the remaining 20 % of the
total flight time for a half-loop maneuver, enabling a second
attempt at intercepting the target in inverted flight.

The minimization of the time to inverted is realized by finding
the highest normal load factor at trimmed pitching moment
and applying the corresponding flight conditions for the time
needed to complete the half-loop as specified in Equation 3.
The factor of two is applied to account for the quasi-steady
modeling. The maximum velocity of the target V4 is com-
puted at the maximum velocity at trimmed level flight, which
is assumed to be close to the maximum velocity at inverted
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level flight as specified in Equation 4. To ensure structural
integrity during the pull-up or half-loop maneuver the normal
load factor is constrained to n., < 9 g.

- Vzb, pu

3) tiny = —— o
g (nzp, pu — 1)
‘/c im
(4) Vinaz, tgr = —— 40—
1+ 0-2tmax

TAB 5. FOMs and constraint of the secondary mission includ-
ing scaling and weighting.

FOMs Scaling [0, 100, 200] pts Weight
tino tino(nzp = [1.5,2.5,9.0] g) 1
Vigt [50, 150, 200] km/h 3
Constraints  Scaling [105, 95, 0] % Weight
N2 [0,6,9] g 4

The mission rating is computed as the weighted sum of the
rated FOMs, multiplied with the weighted product of the
rated constraints acting as dampers as stated in Equation 6.
Before computing the mission rating, the FOMs and con-
straints are normalized per mission as given in Equation 5.
Ultimately, the objective is computed as weighted sum of
the mission ratings mr; as stated in Equation 7, where
the mission weighting is 4:1 between the primary and the
secondary mission.

6  mi=

i = Zw
© @ = (3@ ) ([[en@ )

(7)  obj(&) = mri(&) - mw;

To account for mass changes due to geometric variations
a mass-scaling model as given in Equation 8 is applied to
the wing and the tail. It relates the mass scaling to a span
scaling, corrected for the local fuselage diameter:

m b — DF k
(8) (mmin > (bmin —D» ) where k

The component mass at the current and minimum spans
b and bmin are noted as m and mmin, respectively. The
parameter D denotes the fuselage diameter at the root of
the corresponding lifting surface. The exponent & = 1.4
was chosen as a moderate deviation from the square-cube
law, reflecting the structural mitigation effects of a fixed taper
ratio of 0.6 and internal support structures such as hinge
rods. These design features reduce the bending loads near
the root, leading to a less-than-cubic growth in mass with
span.

4.2. Objective ll

To demonstrate the added possibilities made available by
the introduction of dataset-based optimization, an objective
was formulated in which a complete design mission is flown
and where the flight path of the design mission is optimized
for each geometric evolution to obtain a truly optimal design
based on the high-level objective of interest. In this case, the
maximum obtainable altitude for a 100 second flight was se-
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lected as objective. The aircraft is launched at a 45° climb
angle at a speed of 30m/s and elevation above ground of
5m. The mission integration is performed with a temporal
resolution of 1s and a quasi steady-state is assumed. The
mission is divided into five linear segments in which the com-
manded climb angle is allowed to vary in a linear manner.
A simplified aircraft flight control system attempts to follow
the commanded path as closely as possible, whilst staying
within the allowable flight envelope. In the search for the op-
timal climb strategy, an iterative approach is used, in which
the optimizer adjusts the flight path incrementally in the di-
rection for which the objective improves. This is performed
by examining the combinatorial possibilities of each of the
six flight path node points, by either increasing, decreasing
or keeping the climb angle of each node. For each outer iter-
ation, all 3° = 729 possibilities of changing the flight path are
computed and the best is selected as basis for the next iter-
ation. The increments with which the flight path is varied is
decreased as the optimization progresses. Flight envelope
exceedance or ground collisions are detected and penalized
to ensure realistic results.

For increased fidelity treatment of the structural wing weight,
a localized structural analysis based on beam theory was
applied. This was performed by slicing the wing into 100
segments, where the outer skin thickness of each segment
was determined assuming a 3D-Printed Polylactic Acid
(PLA) structure and a safety factor of around 3. A minimum
skin thickness 0.4 mm was imposed. In addition to the outer
skin, mass of a fixed pattern of ribs and spars was added.
The present optimizations did not incorporate the local
pressure distributions available from the CFD-dataset, but
rather assumed a constant force distribution on the wing.
Each wing was sized to withstand a lifting force of 90 N.

5. OPTIMIZATION STRATEGIES

The three optimization strategies demonstrated in this work
are described in the following subsections.

5.1. Grid Search (GS)

Grid search, or brute-force optimization, samples the design
space using a predefined grid, where the sample points in
the design space are determined solely by the grid spacing
in each dimension and are completely independent of the
objective function.

This method is particularly useful for setting up the opti-
mization problem in a robust manner and allows for the
evaluation of the objective function without any dependence
of an optimization strategy. When the grid resolution is
sufficiently fine to capture the main modes of the objective
function, the results generated via grid search can also
serve to verify various optimization strategies, without the
need for additional HPC resources.

The computational cost of grid search scales exponentially
with the number of design parameters, as it is proportional
to the product of grid points per dimension. Consequently,
fine grid resolutions quickly become infeasible at higher-
dimensional design spaces.

Nevertheless, the independence of each simulation allows
for full parallelization, enabling all grid points to be evaluated
simultaneously, potentially requiring the same wall-clock
time as a single CFD simulation of a control sweep.
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5.2. Gradient-Based Optimization (GO)

Gradient-based optimization (GO) is a local, iterative strat-
egy that uses sensitivity information to evolve the design.
In this framework, finite differencing is used to approximate
gradients (sensitivities), as shown in Equation 9:

dobj _ Aobj  0bjeps,i — objo,i

Teps,i — L0,i

The quantities subscripted with eps denote the perturbed ge-
ometry values, while the 0 subscript denotes the values of
the baseline geometry.

This requires generating a high-fidelity dataset for each de-
sign parameter at every iteration. The parameter updates
are computed by scaling an initial step size according to
the normalized sensitivity, using the mean of previously ob-
served sensitivities while assuming linear dependence be-
tween parameters:

(°50)s

(10) AZEZ = Awo . (601)]’

Sz )mean,z

To dampen overshoots, the parameter increment is reduced
to 25 % after a sign change is detected in the sensitivity his-
tory.

The geometric increments used in the finite differencing are
small, resulting in similar flow fields compared to the base-
line geometry. This feature can be exploited to reduce the
computational cost of the procedure by employing restart
strategies.

Itis worth noting that finite-difference gradients are sensitive
to numerical noise, particularly in high-fidelity CFD environ-
ments where solver convergence criteria and mesh adap-
tation may introduce fluctuations, especially for separated
flow. Proper selection of perturbation magnitudes and con-
vergence tolerances as well as application of temporal av-
eraging of the CFD computation is employed to reduce the
noise.

While adjoint-based methods are more efficient if the num-
ber of optimization parameters is large [14,15], in this work,
finite-differencing was deployed due to its robustness and
overall good efficiency in combination with the dataset gen-
eration procedure.

5.3. Bayesian Optimization (BO)

Bayesian Optimization (BO) is a global, gradient-free
optimization strategy well suited for problems involving ex-
pensive or noisy objective functions. BO builds a surrogate
model of the objective function and uses an acquisition
function to identify promising evaluation points, balancing
exploration and exploitation.

The implementation used in this study is based on the
GPyOpt Python module [16]. For the demonstration on the
OTIFAN test case, Gaussian Processes were employed to
construct the surrogate,and the Expected Improvement (El)
acquisition function was selected. El favors solutions with
the potential to outperform the current best observed value
obj ', as expressed in Equation 11:

(11)

At each iteration, the design parameters with the highest
expected improvement, or maximal expected utility, are se-
lected by trading exploitation and exploration of the objec-
tive function. This strategy offers a sample-efficient search
mechanism, particularly advantageous in aerospace appli-
cations where each CFD run requires significant resources.

w(Z) = max(0, obj ' — obj(Z))
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The scalability of BO is limited in high-dimensional design
spaces due to the increasing cost of surrogate model up-
dates and acquisition function optimization [17].

Since the implementation is based on the GPyOpt module,
other supported acquisition functions such as lower confi-
dence bound (LCB) or maximum probability of improvement
(MPI) can easily be deployed.

6. RESULTS

The following sections present the results of various opti-
mization runs, applying different strategies to distinct objec-
tives.

6.1. Objective I: Grid search (GS)

The first optimization strategy applied to the OTIFAN test
case was a coarse grid search over the three shape param-
eters of wing position zw , wing span by and tail span b¢,
covering the bounds of the parameter space. Additionally,
three equally spaced points were sampled for the wingspan
parameter, yielding a total of 2 x 5 x 2 = 20 aircraft config-
urations. All simulations were executed in parallel at a total
computational cost of 20 - 6 - 1536 = 184 - 10° CPU-hours,
completed in under four hours of wall-clock time.

The resulting data were stored in an interpolator, which
serves as surrogate model to efficiently benchmark the
GO and BO strategies, as shown in Figure 9 and 10,
respectively. Red circles indicate optima within 2 pts of the
true maximum optimum value, while the dashed lines mark
the respective objective and parameter values for the true
optimum found through the grid search.

Both GO and BO were initialized at the midpoint of the
parameter bounds. Within ten iterations the objective,
as specified in Chapter 4.1, was increased from the ini-
tial value of objo, = 72pts to the true optimum value of
objmaz = 90 pts. The corresponding optimal parameter set
was identified with negligible deviation. The wing position
xw reached its lower bound, while the tail span bc had
minimal influence on the objective. The optimum range for
the wing span by appears to be in the lower third of the
parameter bounds. The GO method found the optimum at
the sixth iteration. Assuming that each sensitivity dataset
requires one-third of the resources of a baseline dataset,
the effective cost was 6 x (1 + 3 x ) = 12 full baseline
datasets. This corresponds to 60 % of the cost, but takes
six times the wall-clock time compared to the grid search.
The BO strategy also found the optimum in six iterations,
corresponding to six full datasets. This achieves the op-
timum at 30 % of the cost and also requires six times the
wall-clock time comparison to the grid search.

Due to its non-deterministic nature, BO’s repeatability was
assessed in ten independent runs. As shown in Figure 11,
the method consistently converged to within 5% of the
global optimum.

These results confirm the validity of all three optimization
strategies for the OTIFAN test case, while simultaneously
verifying the correct implementation of both the GO and BO
algorithms.

6.2. Objective I: Gradient-based optimization (GO)

Figure 12 presents the results of a GO run focused on op-
timizing the wingspan only, as it was identified as the most
influential parameter in the GS study. The wing position
and the tail span were fixed to their optimum values from
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FIG 9. Gradient-based optimization (GO) based on grid search
interpolation for Objective I.
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FIG 10. Bayesian optimization (BO) based on grid search inter-
polation for Objective I.
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FIG 11. Relative error for ten repeats of the BO based on grid
search interpolation for Objective I.

the GS.

Starting from the parameter midpoint, the optimizer pro-
gressively adjusted the wingspan toward a local optimum,
halting when the sensitivity approached zero.
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The objective peaked at objmq. = 95 pts, surpassing the
grid search result in iteration five. The final design was
obtained within one day of wall-clock time and required
5 x (14 1) = 10 full baseline datasets.

The optimal wingspan was found to be by opt = 0.721 m,
yielding mission ratings of 106 pts and 61 pts for the primary
and secondary missions, respectively.
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FIG 12. Gradient-based optimization results on parameter
wingspan only for Objective I.

6.3. Objective I: Bayesian optimization (BO)

Figure 13 shows the BO results for all three shape param-
eters over twelve iterations. The optimization history shows
the five initial iterations where a latin hypercube sampling is
applied. From iteration six onward, the objective remained
above the grid search maximum, delivering a sufficiently op-
timal design for the three parameters within one full day of
wall-clock time at the cost of six datasets.

The optimal shape parameters were found to be zw,opt =
min zw, bw,opt = 0.581 m and bc,opr = min be.

The corresponding mission ratings were mr; = 110 pts and
mry = 55pts, resulting in a maximum objective value of
objmaez = 97 pts - the highest across all tested strategies.
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FIG 13. Bayesian optimization results on all parameters

6.4. Comparison of GS, GO and BO

An overview of the optimization results is provided in Ta-
ble 6. The lower portion of the table lists the FOMs and
constraints.

All optimization strategies improved on the initial design,
primarily by reducing the wingspan and increasing the ob-
jective by over 20 pts - approximately a 30 % improvement
versus the configuration at the midpoint of the parameter
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bounds. The optimized designs can intercept targets at
altitudes of H ~ 1000 m and velocities of Vi, ~ 100 km/h
within the total mission time of ~ 2 minutes, while the
constraints on the load factors during catapult launch and
pull-up maneuver are satisfied.

TAB 6. OTIFAN optimization results overview for Objective I.

Property Midpoint GS GO BO Unit
obj 69 90 95 97 [pts]
Tw 0.218 0.208 0.208 0.208 [m]
bw 1250 0500 0.721 0.581  [m]
bc 0.225 0.275 0.175 0.175 [m]
mr 68 104 106 112 [pts]
mra 70 49 62 52 [pts]
cri 100 95 97 96 (%]
cra 97 100 99 100 (%]
mass 3.78 3.25 316 3.06 [kg]
H 733 1015 1058 1138 [m]
J 238 238 226 224 [N
Nab 5.2 9.9 81 90 [g]
tino 105 21.3 152 17.7 [s]
Vigt 102 90 103 98  [km/h]
nzp 4.7 3.1 39 36 [g]

The BO approach achieved the highest objective value
by further compromising on the secondary mission and
reducing the mass through decreasing wing and tail spans,
resulting in the highest intercept altitude (the most heavily
weighted performance metric).

Figure 14 visually compares the optimized BO geometry
to the initial design at the mid-bound parameter values.
However, as mentioned above, the optimized geometry pre-
sented is solely a demonstration of the shape optimization
framework.

z

FIG 14. Comparison of the BO shape optimum (green) versus
the initial shape (grey), including the fixed fuselage ge-
ometry (blue) for Objective I.

6.5. Objective II: Gradient-based optimization (GO)

In Figures 15, 16 and 17 the results of the climb mission op-
timization are depicted. The wingspan and root chord of the
wing were selected as parameters in the optimization. It can
be seen that a relatively complex climbing strategy results,
terminated by a zoom climb to obtain the maximum control-
lable final altitude. For this objective function, the optimal
wingspan and exposed root chord was found to be 0.636 m
and 0.098 m respectively, with a wing mass of 0.147 kg, re-
sulting in a maximum climb altitude of 1353 m. The opti-
mized geometry was reached after nine optimization steps.
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The optimization procedure thus involved the generation of
27 wing meshes and the solution of 810 RANS computa-
tions. This optimization demonstrates the possibility of re-
laxing the constraints of design missions, allowing the tool
to identify the optimal combination of geometry and mission
profile to achieve higher level mission goals. This is con-
sidered a very attractive capability in the aircraft design pro-
cess.
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FIG 15. Flight altitude over flight time for GO optimization re-
sult on Obijective .
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FIG 16. Flight path angle, angle of attack and control surface
deflection angle over flight time for the optimization re-
sult on Obijective .
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FIG 17. Top view of the GO-optimized geometry for Objective Il
at Ma = 0.25, « = 2° and § = 0°.

7. CONCLUSION AND OUTLOOK

This study has demonstrated the feasibility of high-fidelity
RANS dataset-based aerodynamic shape optimization
within an automated framework. The software was applied
to the Optimization Test Interceptor with Fan (OTIFAN) - a
fixed-wing unmanned aerial vehicle configuration featuring
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an internal electric ducted fan (EDF) propulsion system.
Two objective functions and several geometrical parameters
were considered.

The multi-mission objective function evaluated multiple
flight phases, including launch, climb, and intercept, for a
primary mission. A secondary mission, involving a follow-up
intercept after a failed initial attempt, executed via a half
loop and an inverted intercept maneuver. A combined wing
geometry and flight path optimization was also shown,
further demonstrating the possibilities available when the
entire dataset is present for the objective evaluation.

The influence of non-aerodynamic disciplines such as mass
properties, performance, flight dynamics, and structural
loads was modeled using lower-fidelity methods to enhance
the validity of the obtained design solutions.

Three optimization strategies were deployed, each with
distinctive advantages and limitations:

« Grid Search: Useful with coarse spacing for initial
setup and objective function validation or manual tun-
ing, but computationally too expensive for automated
optimization.

Gradient-Based Optimization: Enabled efficient lo-
cal convergence, or global via multi-start at reduced
efficiency.

Bayesian Optimization: Provided global search capabil-
ities without requiring sensitivity computation.

All optimization strategies exhibited stable convergence
behavior and were successful in identifying local or global
optima, demonstrating the potential of high-fidelity dataset-
based optimization in aircraft design.
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