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Abstract
This study presents a method for generating infrared images using deep learning techniques, specifically Generative Adversarial
Networks (GANs), trained on data from real flight experiments. Implemented in Python, the approach leverages a U-Net
adapted for gray-scale IR image generation. After training on a multi-core computer, the method achieved accurate infrared
image generation, applicable in flight simulation and autonomous navigation.
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NOMENCLATURE

Abbreviations

GAN Generative Adversarial Networks

IR infrared

1. INTRODUCTION

One of the most in-depth explored fields of simulation is the
simulation of real-time imagery for flight simulation, and, re-
lated to this, electro-optical camera simulation. The simula-
tion of infrared sensors, especially IR cameras is closely related
and can be seen as a special case of optical camera simulation.
Consequently, different implementations exist for application
areas, such as airborne combat training [1], autonomous robot
navigation [2], and flight testing [3]. Most of these application
areas require real-time performance. Thus, these solutions are
mostly based on the same graphics techniques as the visual
simulations. However, since a larger effort has been spent on
modelling visual appearance adequate models of real-world
objects like houses, buildings and entire terrains do not exist
for infrared simulation. Visual models usually lack thermal
material properties that would be necessary to utilize such
models for IR simulation. Consequently, a huge part of mod-
elling efforts need to be spent for augmenting existing visual
models with thermal properties.
The idea of this paper is to implicitly generate IR images from
a stream of visual images by utilizing data that is available
in a visual or electro-optical simulation. This study presents
a method for generating infrared images by leveraging deep
learning techniques, eliminating the need for additional mod-
eling efforts. The approach utilizes Generative Adversarial
Networks (GANs) and similar technologies, trained on data
from real flight experiments. This method enhances the effi-
ciency and accuracy of infrared image generation, paving the
way for applications in the field of flight simulation, sensor
processing, and autonomous navigation.

2. TRAINING DATA

Two sets of training data were used during the experiments:
• A set of 1600 optical camera and infrared camera image

pairs generated using a sensor simulator. This set was used

during the test phase of the experimentation to find a suit-
able combination of network architectures, loss function,
optimizer and training method.

• A set of over 4000 optical camera and infrared camera im-
age pairs taken from a flight campaign in 2012 [4]. Fig. 2
shows a pair of an electro-optical camera image and an IR
image from the training data-set.

3. METHOD

The task is to generate synthetic IR images from a stream
of (possibly simulated) camera images. Fig. 1 illustrates the
workflow of the method: Given a pre-recorded set of not nec-
essarily aligned corresponding camera and infrared images a
Neural Network was trained using a sub-set of these. Then,
the remaining images could be used to evaluate the efficiency
of the approach. Several possible methods were considered:
• Autoencoder: Autoencoders are optimised to imitate the

input image directly. Therefore, they poorly adapt to the
training inputs since here the expected output does not
match the input. Changing the output layer to instead pro-
duce false-colored IR images was not very successful. Re-
sults remained blurry, and the loss function did not converge
after a certain point.

• Neural network with “full mesh”: Full mesh networks con-
nect every input neuron to every other output neuron. This
ensures that each input pixel can in principle influence each
other output pixel. However, when choosing a lower num-
ber of internal nodes the complexity of the network seemed
to be not sufficient for the task. The loss function did not
converge at all. Higher node numbers tend to increase the
training effort exponentially without a visible improvement
in convergence.

• Convolutional network with residual feed-forward (“U-
Net”): Convolutional neural networks overcome the
problem of full-meshed networks by limiting the influence
of single input neurons locally. Further, the residual
feed-forward technique introduces higher-frequency earlier
iterations of the input again at a later stage in the network
to enable the network to re-introduce higher image fre-
quencies without loosing efficiency, see Fig. 5. The U-Net
architecture was originally developed for segmentation and
pixel classification. Using a network originally meant for
image segmentation [5], we adopted an approach with 256
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FIG 1. Workflow of generating synthetic IR images from real or simulated camera data

FIG 2. Example pair of an electro-optical camera image and
an IR image

FIG 3. Training results for a discrete U-Net with ADAM opti-
mizer

FIG 4. Training results for a floating-point U-Net with
NADAM optimizer

“classes” corresponding to the grey levels of the IR image.
As the loss-function binary cross-entropy was chosen, which
is a standard for classificator networks, as the optimizer
ADAM [6] was used. The result is depicted in Fig. 3.
While the network quickly adopts the overall segmentation
of sky and sea in the training set, bright heat spots are
only coarsly approximated even after over 150 epochs.
Therefore, a modified approach utilizing floating-point grey
scales was implemented. The NADAM [7] approach was
chosen for the optimizer, using Mean Square Error as the
loss function. The result can be seen in Fig. 4. While the
network quickly picks up the overall positions of brighter
spots, finer details are not reproduced even after over 400
epochs of training.

• GAN: The term Generative Adversarial Network (GAN) de-
scribes a method for mutual training of two networks: The
generator and the discriminator (see Fig. 6). In principle,
since this is a training method GANs can be used with any
network architecture. We combined it with the U-Net ar-
chitecture from the previous iteration which was up to that
point the most promising method. This yielded the best
method in this trial. The combination U-Net with GAN
was chosen as the final implementation.
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FIG 5. Architecture of a U-Net, adapted from [8]

FIG 6. Principle of a GAN

The method implemented was based on the satellite-
to-map technique developed by Nhu [9] which in turn was
based on the well-known pix2pix technique by Isola et al. [10].

The method was implemented using a development environ-
ment in Python and/or Jupyter-Notebook. A combination of
the following methods was used:
• Convolutional Network with Residuum-Feed-Forward (“U-

Net”): Initially designed for segmentation and pixel classi-
fication, the U-Net was adapted to generate gray-scale IR
images.

• GAN: The best method identified for training the network,
utilizing a Generative Adversarial Network with mutual
training of two networks (Generator and Discriminator).

4. RESULTS

Successful implementation of a functioning concept was
achieved, which was then ported to a single Python module
and executed on a multi-core computer with 96 threads. This
allowed the training to be carried out for more than 90000
epochs in a reasonable time. Consequently, a higher fidelity

of the generated images was achieved. Fig. 8 shows selected
intermediate results from the training process. Note the red
arrows highlighting visible deviations of the synthetic image
from the ground truth image. These deviations disappear in
higher epochs.
After training for 98000 epochs a sufficiently accurate imita-
tion of infrared images from input optical images was achieved
(Fig. 7). The resulting network could then be used to gener-
ate arbitrary infrared images from input camera images during
a simulated flight. A result can be seen in Fig. 9: The orig-
inal image on the left was not contained in the training set.
Instead, it was taken from a different flight of the same cam-
paign. One observes that several details like the snow line
next to the street on the left and the snow covered roof on
the right are reproduced (as dark structures) in the synthetic
IR image. Further, the different camera pose from the training
set is imitated properly.

5. CONCLUSION

It was demonstrated that a U-Net combined with a GAN is
able to imitate an IR camera stream based on data available
in a common flight simulation. The authors have yet to
implement the demonstrated solution in a real setup to
bench-mark the performance in daily use. Further, it seems
obvious that the network would adapt to special cases of
IR simulation only when trained with data from a single
campaign. Thus, larger more diverse sets of training data
would be needed to construct a solution viable for different
simulation uses, e.g., on- and offshore flight missions or
indoor use of IR cameras.

Although in this study some experiments made use of Lidar
data as an additional input to the generator network it is
not clear if this is really beneficial since in large parts of the
training data Lidar data were either not available or objects
were beyond the range of the sensor. Consequently, follow-up
studies should investigate if depth data provide improvements
when using synthetic input data.
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FIG 7. Input camera image (left), real IR image (middle), and synthetic IR image (right)

FIG 8. Selected results from the training process in different epochs

FIG 9. Input camera image (left) and synthetic IR image (right)
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