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Abstract
This work aims to improve the flight dynamic model of the model aircraft Vitesse V2 through parameter
identification using an extended and unscented Kalman filter (EKF and UKF). A flight mechanical model is
integrated into the filter algorithms in MATLAB to estimate the aircraft’s states and aerodynamic coefficients.
Two variants of the UKF are examined: a general case with nonlinear noise and a simplified case assuming
additive zero-mean noise. By conducting flight tests, data is obtained to optimize the filter design parameters
as well as for the actual parameter identification.
The results show that the simplified UKF provides the best balance between capturing system dynamics and
ensuring parameter convergence. Its superior performance over the EKF is likely due to the sigma point method,
which enhances the accuracy of state and parameter estimates. Focusing on aerodynamic parameter estimation
and using longer datasets significantly improves accuracy and convergence of the estimated parameters.
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NOMENCLATURE

Symbols

α angle of attack deg

αUKF scaling parameters for UKF

β side slip deg

βUKF scaling parameters for UKF

d disturbances

δt thrust throttle level

h altitude m

K Kalman gain

κ scaling parameters for UKF

MA
CG aerodyn moment at CG Nm

MT
CG thrust moment at CG Nm

ω aileron control surface deflection/s rad

P estimation error covariance matrix

Pa estimation error of the augmented system
covariance matrix

pdyn dynamic pressure Pa

Φ, Θ, Ψ Euler angles rad

p,q,r roll, pitch, yaw rate rad/s

Q system noise covariance

R measurement noise covariance

RA
b aerodyn. force vector, body frame N

σrel relative standard deviation

T b thrust vector, body frame N

Θ parameters to estimate

u control inputs

ukb
,vkb

,wkb
translational velocities along the
x,y,z axes m/s

v measurement noise

V kb
path fixed velocity in body frame m/s

V w Wind velocity m/s

w process noise

W b Weight force vector, body frame N

x states

xa augmented states

y outputs

z measured outputs

ζ,η,ξ rudder, elevator, aileron deflection deg
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FIG 1. Vitesse V2 model glider [1]

Abbreviations

AC Aircraft

CG center of gravity

EKF Extended Kalman Filter

KF Kalman Filter

NMSE Normalized Mean Squared Error

PWM Pulse Width Modulated

UKF Unscented Kalman Filter

1. INTRODUCTION

Accurate physical models are essential for simulating
systems under varying conditions and for developing
control algorithms, with complexity depending on the
application. This work aims to improve the model
of the Vitesse V2 motor glider by estimating aerody-
namic parameters and system states using different
types of Kalman filters. Implementing these filters
on the flight computer enables state feedback control,
adaptive control, and real-time model verification,
which can benefit not only this research aircraft but
potentially other types as well. The objective of this
work therefore focuses on an identification problem
(finding the system behavior based on known inputs
and outputs). This involves using a phenomenological
model, which is based on equations of motion and
provides traceable internal behavior. Analytical
values are used as initial estimates for the parameters
that will be improved using actual flight test data
that is collected during a test campaign conducted in
the course of this work. Subsequently the log data of
those flight tests is used for the recursive parameter
estimation using different Kalman Filters.
The Kalman Filter (KF), introduced by Rudolf
Kalman in 1961 [2], estimates state variables based
on system inputs, outputs, and a linear model. The
Extended Kalman Filter (EKF) was later developed
to handle nonlinear systems by linearizing them
around each state, allowing it to be used for both
state and parameter estimation [3]. Various KF
variants have since emerged, including the adaptive
ROSE-Filter (Rapid Ongoing Stochastic covariance
Estimation-Filter) described in [4] and the Unscented
Kalman Filter (UKF) [3, 5], which improves upon the
EKF by avoiding errors in linear propagation through
the sigma point method. The UKF is widely used

Transfer
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Filter Design iteratively

Using recorded
Flight Data

Using Simulation
Results

Parameter Identification
Evaluation of Quality
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Model

Flight mechanical model of Vitesse

FIG 2. Procedure

in fields like aerospace, navigation, and robotics, and
remains an active area of research.
To achieve parameter estimation using different types
of Kalman filters, the existing flight mechanical model
of the Vitesse V2 is transferred from Simulink to MAT-
LAB. This model is integrated into the EKF and UKF
algorithms, with the filter design optimized using both
simulated sensor data and real flight test data. The
flight tests are prepared and conducted and subse-
quently provide the log data that are then used for
the final parameter identification and the evaluation
of the filter performance as described in figure 2.

2. FLIGHT MECHANICAL MODEL

The mathematical model of the aircraft (AC) and its
flight dynamics is needed to simulate the AC together
with the Kalman Filter. However, it is also part of
the filtering algorithm itself as the Kalman filter is an
optimal state observer [6].
The basic structure of the flight mechanical model
shown in figure 3 is based on Newton’s 2nd law. A
more detailed derivation can be found in [7].
The states vector that is part of the representation of
the model results from the derivation of the equations
of motion. By including the path velocity in the body
frame V kb

, the angular rates ω, the Euler angles Φ, Θ
and Ψ and the height h it is defined in a way that is
common practice to sufficiently describe the behavior
of the AC.

(1) x =


V kb

ω[
Φ Θ Ψ

]T
h


The control variable vector u is made up of the thrust
input δt and the control surface deflections of the rud-
der ζ, elevator η and aileron ξ

(2) u =
[
δt ξ η ζ

]T
.
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states x

control variables u

disturbance d

Aerodynamics: RA
b , MA

CG

Weight: W b

Thrust: T b, M
T
CG

Differential
Equations
of Motion

state derivatives ẋ
∫

FIG 3. Complete flight mechanical model

Lastly, the wind velocity represents the only distur-
bance variable

(3) d = V w.

The weight force vector W b is modeled by assuming
a constant mass. Further, a simple model is also used
for the engine by assuming the transfer function from
the control input δt, a pulse width modulated signal
sent from the flight computer to the engine, to the
thrust force, to be a simple gain. As the aircraft has
a one-prop-on-the-nose configuration, the direction of
the thrust force is aligned with the x-axis of the body
frame and the thrust force is therefore only composed
of an x-component. Moreover, in the postulated
model of the Vitesse, the thrust does not cause a
momentum around the center of gravity.

Besides the weight and the thrust forces, the aerody-
namic forces and moments are acting on the AC. As
this is the part of the model that will be improved
through parameter estimation in this work, the model-
ing of the aerodynamics is of special interest. To avoid
using computationally expensive methods like the po-
tential theory, it is reasonable to use non-dimensional
aerodynamic coefficients like CL and Cm to display
the dependencies of the acting forces on the incident
flow. These coefficients can vary in the complexity
of their composition depending on the objective and
conditions. For this work, the aerodynamic coefficients
include all derivatives listed in table 1. Each of these
derivatives represents a partial derivative to a flight
condition variable. Parameters that involve partial
derivatives to other motion variables, for example

(4) CY β =
∂CY

∂β
,

are referred to as stability derivatives while derivatives
with respect to control variables as for example

(5) CY ζ =
∂CY

∂ζ

are referred to as control derivatives. With all param-
eters listed in table 1, Cm for example is defined as

(6) Cm = Cm0 + Cmα · α+ Cmq · q̄ + Cmη · η.

Longitudinal Lateral
CD0 CL0 Cm0 CY 0 Cl0 Cn0

CDq CLα Cmα CY β Clβ Cnβ

CDη CLq Cmq CY p Clp Cnp

CDα CLη Cmη CY r Clr Cnr

CDα2 CLβ2 CY ζ Clξ Cnξ

CDβ2 Clζ Cnζ

Control Derivatives
Cross-Coupling between longitudinal and lateral
Cross-Coupling between roll and yaw

TAB 1. Aerodynamic Derivatives

Another classification that can be applied to the
derivatives is the direction of action of the force or
momentum that they are influencing. All parameters
that describe an impact on the drag, lift or pitch
are therefore listed under longitudinal, while those
affecting the side force, the roll or yaw motion are
lateral derivation. Those derivatives that portray an
effect of a lateral flight parameter on a longitudinal
force such as, for example, CLβ2 are referred to as
Cross-Coupling. However, Cross-Coupling effects can
also be observed between roll and yaw motions as, for
example, described by Cnp.

The Vitesse V2 is a model motor glider of the manu-
facturer Dymond. Some dimensions of the aircraft are
given in the manual [8] including the airfoil types and
others were measured such as the airfoil coordinates of
the stabilizers [9] and the mass of the fully equipped
aircraft. To determine the tensor of inertia, the values
of a similar aircraft model included in the open source
model airplane simulator CRRCSim were used [9]. An
overview of the dimensions can be found in 5.
The postulated flight mechanical model of the Vitesse
V2 was developed by Wolfram Meyer-Brügel in 2015
and is a simplified flight dynamic simulation model
based on the high precision flight simulator in [10].
The Simulink model that was also used in [9] draws
data from two input files, a stability derivative file and
a mass and inertia file that are results from a Vitesse
model that was built in OpenVSP as described in [9].
As shown in figure 2 this flight mechanical model was
used to incorporate into the filtering algorithm but
also to generate log data to iteratively lay out the
filter design. For the latter, sensor models with the
specification obtained from the data sheets of the on-
board sensors were added to the simulation. For the
aircraft being considered, all the sensors used except
the pitot probe and the GPS module are onboard the
Pixhawk 4 mini flight computer. The angular rates as
well as the accelerations are measured by the inertial
measurement unit (IMU) BMI055. The height is de-
termined using the barometric pressure measured by
the MS5611 barometer, whereas the dynamic pressure
is measured by the pitot probe equipped with the pres-
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sure transducer MS4525DO. In addition, the Neo-M8N
GPS module is included to obtain the coordinates. An
already implemented filter on the flight computer esti-
mates the Euler angles from the measurements. Thus,
the output vector of the system that is needed for the
filtering algorithm can be defined as

(7) y =
[
ωT V̇

T

kb
Φ Θ Ψ V T

ke
h pdyn

]T
.

3. KALMAN FILTERS

The structure of the Kalman filter as depicted in
figure 4 is based on two steps: the prediction step or
time update and the correction step or measurement
update. In the prediction step, the predicted states
and the predicted covariance matrix of the estimation
error are determined. In the correction step, the
output variables for the predicted states and given
inputs, the Kalman gain, and the corrected states
and covariances are determined. This basic structure
underlies the classic Kalman filter as well as the EKF
and the UKF.

Kalman Filter

Prediction

Predicted states
Predicted covariance

Correction

Predicted output

Kalman gain
Corrected states
Corrected covariance

,

Measured
outputs

Inputs

,

FIG 4. Kalman Filter structure

3.1. Extended Kalman Filter

While the original Kalman filter uses a linear model
of a system to estimate the system’s states, the EKF
can be used for non-linear models. To estimate not
only the states but also parameters such as stability
and control derivatives, the state vector is augmented
with the searched parameters. Subsequently, the non-
linear filter is applied to the augmented states. The
algorithm is described and explained in detail in [11].

3.2. Unscented Kalman Filter

For highly non-linear systems, even the EKF might
decrease in performance. This is because the calcula-
tion of the covariance matrix includes the linearized
version of the model. However, the more recently in-
troduced UKF can show better performance using a
method called the unscented transform [3]. A finite
set of representative points, the so-called sigma points,
that capture the mean and covariance of a probabil-
ity distribution, is propagated through the nonlinear
dynamics. The distribution of these points is specified
by the scaling parameters αUKF , βUKF and κ. When
designing the UKF, different cases that significantly
affect the algorithm can be considered.

1. General case
Noise enters the system non-linearly. The aug-
mented vector, therefore, has to be written as

xa =
[
xT ΘT wT vT

]T
.

2. Special case
Additive zero-mean noise disturbances are assumed,
and the augmentation of the state vector through
the noise vector is not necessary. xa will then be

composed as for the EKF: xa =
[
xT ΘT

]T
.

3.3. Filter Design

In order to implement the filters for the objective of pa-
rameter estimation in Matlab not only the algorithm,
the modeled system and the definition of the parame-
ters that will be estimated is necessary but also various
design parameters have to be set.
For the EKF as well as for the UKF, the initial aug-
mented states vector xa0, the initial covariance matrix
Pa0, the process noise covariance Q and the measure-
ment noise covariance R have to be set. Further, the
scaling parameters αUKF , κ, βUKF have to be set for
the UKF.
While the initial states x can be set by taking the
measurements or computed from the measured values,
the initial values for the parameters that will be es-
timated Θ are obtained from the aerodynamic model
generated through VSPAERO. Regarding the covari-
ance, the initial matrix represents the confidence in the
starting values with a higher number indicating a lower
confidence. As a first approach the diagonal terms of
the matrix that represent the parameters are conser-
vatively set to 10. However through an optimization
process of the filters it was found that a lower initial
covariance can improve the convergence of the param-
eters that are being estimated.
The process noise covariance matrix Q represents the
system’s noise and therefore also the uncertainties in
the model of the system with a higher value indicating
a higher uncertainty. Overall, if the matrix is set too
small, the filter might not be able to track changes in
the system dynamics which would result in poor per-
formance. If Q is chosen too large, there is a risk that
the filter will become unstable as a higher Q results in
a bigger Kalman gain K. As an initial guess 10−5 is
chosen and used for the optimization.
The measurement noise covariance matrix R is often
seen as the counterpart to the process noise covariance
Q. While Q indicates the trust in the model, R ex-
presses how much the measurements can be trusted.
Good estimations for the measurement noise covari-
ance matrix R can be derived from the characteristics
of the instrumentation used. The initial values for R
derived from the specifications of the sensors listed in
2 can be found in [7]. To ensure the best outcome of
the filters R was also optimized.
For the UKF the scaling parameters αUKF , κ, βUKF

have to be set. The parameter αUKF shall be between
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0.001 and 1 and determines the spread of the sigma
points around xa [12]. By varying κ the fourth and
higher order moments of the sigma point distribution
can be adjusted [5] and the parameter βUKF can be
used to include prior knowledge of the distribution of
the states and parameters. For a Gaussian distribu-
tion setting βUKF to 2 is optimal [12].
As it is shown in the visualization of the procedure of
this work in figure 2, the design parameters of the fil-
ters were first tested using log data obtained through
the simulation of the simulink model including the
added sensor models and then optimized using the ac-
tual flight data. This optimization was performed by
defining quality criteria of the parameter estimation
outcome and using the global solver patternsearch()
which is part of the MATLAB optimization toolbox.
As quality criteria and cost function the relative stan-
dard deviation σrel of the parameters and the the nor-
malized mean squared error (NMSE) are used. The
relative standard deviation is computed through

(8) σrel =
100 · mean100(σ)

|mean100(x̂param)|

with σ being the standard deviation determined for
every time step within the filtering algorithm through
the square root of the updated covariance matrix as

(9) σ =
√

P̂ .

mean100(σ) in equation 8 therefore describes the mean
of the standard deviations for the last 100 points. The
NMSE is computed as

(10) NMSE =
mean((ỹ − z)2)

var(z)
.

with mean((ỹ − z)2) being the mean of the squared
residual meaning the difference between the estimated
and the measured output and var(z) describing the
variance of the measured outputs. For the mean
as well as the variance the whole simulation except
for the first 20 points is taken into account. This
is because the filters need some time to follow the
system’s dynamics and especially for the purpose
of parameter estimation the large residuals at the
beginning of the simulation do not affect the relevant
outcome.
The optimized filter parameters obtained through
minimizing the mentioned quality criteria with the
patternsearch() algorithm are listed in [7].

4. AERODYNAMIC PARAMETER IDENTIFICA-
TION

In order to estimate the previously defined control and
stability derivatives flight tests were prepared and con-
ducted.

4.1. Flight tests

Prior to the conduct of flight tests, specific maneuvers
were defined.

control input objective
Elevator doublet short period excitation
Elevator multistep short period excitation
Elevator pulse phugoid mode excitation
Aileron multistep bank-to-bank maneuver

roll mode excitation
Rudder doublet Dutch Roll Excitation
Rudder pulses achieving steady sideslip
Thrust variation phugoid mode excitation

TAB 2. Flight maneuvers and control inputs

The selected maneuvers listed in table 2 all intend to
excite different eigenmodes of the aircraft or achieve
certain flight conditions that provide information
about the longitudinal and lateral control and stabil-
ity derivatives, as well as the cross-coupling effects.
During the design process, all maneuvers are simu-
lated using the Simulink model of the AC to ensure
that the control inputs lead to the desired dynamic
response.

By implementing the maneuvers on the Pixhawk 4
mini flight controller, the pressure on the pilot is
minimized, and the exact execution of the control
input is guaranteed.
The implementation is done in a way that allows
the pilot to activate the maneuver as soon as the
right flight conditions have been reached by flipping
a switch. To activate the maneuver the aircraft has
to be in stabilized mode. This mode which is already
part of the PX4 Autopilot keeps the vehicle in a
straight level flight position. As this is the initial
position for all maneuvers, it is reasonable to start the
control inputs from this mode. Further, it is possible
to change the amplitude of the control input, as well
as the ∆t, the duration of a specific deflection, by
changing different parameters in QGroundControl
in the event that an eigenmode is not excited as
expected.

4.1.1. Conduct of flight tests

The flight tests are conducted outside of Berlin on
a day with very few clouds and wind velocities of
around 4.7m/s. The software QGroundControl was
used to track relevant quantities at all times and to
change the before-explained parameters. The antenna
connected to the computer running QGroundControl
received telemetry data from the Holybro Telemetry
Module that is operating at 433 MHz. Further, a
FrSky Taranis Q X7 transmitter is used to communi-
cate with the Pixhawk 4 mini and remotely control
the Vitesse V2. Onboard the model motor glider,
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a Ublox NEO-M8N GPS module, as well as the
differential pressure sensor, MS4525DO, with a Pitot
probe mounted on the right wing and a power module
(PM02 V3) to measure voltage, current and power,
are connected to the Pixhawk. As power supply, a
Hacker LiPo battery (3s, 3800mAh) is integrated into
the body of the plane, as shown in the schematic view
in Figure 5.

FIG 5. Schematic view of the Vitesse V2 [1]

In total, four flights were conducted. After the first one
was an open loop flight that served to familiarize the
pilot with the aircraft, in the second and third one ma-
neuvers to characterize the longitudinal motion were
executed. Lastly, during the fourth flight maneuvers
affecting the lateral motion were carried out. Unfortu-
nately, the destabilizing wind prevented the execution
of the maneuvers that require a longer period of data
acquisition such as the elevator pulse, the thrust vari-
ation and the rudder pulses.

4.2. Post-processing

The flight data was saved in a ULog file and processed
using a MATLAB script. Relevant topics such as in-
puts (actuator outputs), measured outputs, and added
parameters were extracted as time series, with most
data logged at 100 Hz, except for GPS data limited to
5 Hz due to hardware constraints. To align the data
on a common time axis, the time series were interpo-
lated, and quaternions were converted to Euler angles.
Control surface deflections were calculated from actu-
ator PWM signals, and thrust was estimated using a
proportional transfer function. An algorithm was im-
plemented to save time series for each maneuver sepa-
rately.
The maneuvers were then evaluated to identify those
suitable for parameter identification.
After interpolating, saving, plotting and selecting suit-
able maneuvers, the data was used for the before men-
tioned optimization of the filter design parameters.

4.3. Results

With the optimized filters and the flight test data,
the estimation of the aerodynamic derivatives listed
in table 1 was pursued.

To estimate the derivatives of the longitudinal motion
the parameters of the lateral motion were fixed on their
initial values obtained from VSPAero. The Maneuver
data of the 3-2-1-1 maneuver which is shown in figure

FIG 6. 3-2-1-1 Maneuver

6 is used as it is more informative than the elevator
doublet due to the longer input and more changes.
Further, the second before the maneuver is activated
is also taken into account and the time series is con-
catenated four times as it increases the quality of the
results.
Something that stands out in the plots of the aircraft’s
reaction to the elevator input is the smooth curve of
the pitch angle which is due to the filtering of the Eu-
ler angles that is already implemented on the Pixhawk.
Although the other measured quantities are noisy they
show an overall expected behavior.
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FIG 7. 3-2-1-1 Maneuver, filtered

Figure 7 shows the different filters’ abilities to follow
the system dynamics. As the pitch rate q is defined as
a state, it includes the correction through the Kalman
gain and is therefore estimated more accurately than
the accelerations that are defined as outputs. A no-
table issue in all plots is the poor quality of the signals
estimated by the Extended Kalman Filter (EKF). Al-
though the pitch rate estimation becomes less noisy
over time, it remains noisier than the measured sig-
nal by the end. During optimization, it was observed
that reducing the measurement covariance, thus giv-
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ing more weight to the measurements, can decrease
the noise in the EKF estimation. However, this also
results in reduced convergence of the estimated pa-
rameters, presenting a trade-off between signal noise
reduction and parameter convergence.
Overall, figure 7 and the normalized mean squared er-
ror of all outputs listed in table 3 show that the UKF
with additive zero mean noise is most capable to fol-
low the system dynamics.
The resulting estimations of the aerodynamic parame-
ters as well as their respective standard deviation and
relative standard deviation is listed in table 6. More
information including plots of the estimated parame-
ters are portrayed in [7].

EKF UKF UKFaug

p 20 0.46 0.96

q 0.053 0.11 0.17

r 0.11 0.13 0.48

u̇kb 10 1.4 9.4

v̇kb 2.3 · 10+2 13 1.3 · 10+2

ẇkb 1 0.072 0.24

Φ 9.2 0.017 3.5

Θ 9.7 0.41 7.9

Ψ 1.5 0.099 0.17

ue 0.012 0.15 0.01

ve 0.012 0.17 7.9 · 10−3

we 3.6 · 10−3 0.014 1.7 · 10−3

H 22 7.8 · 10−4 0.064

pdyn 0.24 5.8 · 10−4 1.4

TAB 3. NMSE, 3-2-1-1 Maneuver

For the estimation of the lateral derivatives, the
derivatives of the longitudinal motion are kept fixed
at their initial values. However, it was not possible
to filter the data multiple times by concatenating
them as was done for the 3-2-1-1 maneuver. This is
because the filter destabilized due to the jump in the
values when going from the end of the maneuver to
the beginning of it. The bank-to-bank maneuver and
the rudder doublet were therefore filtered once.
Table 4 shows the normalized mean squared error for
the outputs when using the bank-to-bank maneuver
to estimate the lateral parameters. Similarly to the
simulation of the 3-2-1-1 maneuver, the UKF shows
the smallest errors for most of the outputs. The
resulting parameter estimations are listed in 7. As for
the outcome of the longitudinal parameter estimation
some of the results seem realistic while many of
them also show unlikely values or poor convergence.
Since more data could have significantly improved
the results, a much longer time period that does not
include the predefined maneuvers and was flown by
the pilot in open loop will be used for parameter
estimation of the complete model.
The results generated through the simulation of the
rudder doublet are described in [7] and do not provide

any new significant findings.

EKF UKF UKFaug

p 11 1.5 1.7

q 25 11 96

r 2.6 2.6 0.81

˙ukb 1.4 · 10+2 7.7 50

˙vkb 4.4 · 10+2 1.4 · 10+2 29

˙wkb 2.4 0.74 0.42

Φ 8.9 4.3 · 10−3 2.9

Θ 16 3.1 3.1

Ψ 19 1 15

ue 0.22 0.052 0.088

ve 0.051 3.3 · 10−3 5.6 · 10−3

we 0.028 1.6 · 10−3 5.2 · 10−4

H 10 8.9 · 10−5 0.031

pdyn 1.5 3.5 · 10−4 2.4

TAB 4. NMSE, bank-to-bank Maneuver

Lastly, the flight data of the first flight which was
flown in manual mode by the pilot was used for pa-
rameter identification of the complete model. During
the flight, the pilot flew straight stretches of about
300 meters and executed turns with slight variations
in altitude and velocity, while controlling the thrust,
elevator, and aileron. The rudder deflection remained
constant, preventing the estimation of rudder-related
parameters. Additionally, the varying thrust, veloc-
ity, and altitude during the flight pose a challenge for
parameter estimation, as aerodynamic derivatives, al-
though assumed constant, are influenced by changing
flight conditions [13].
While the parameters can be estimated together with
the states, it is also possible to estimate only the pa-
rameters. To do so, we can treat the states as inputs
and change the output vector to include the linear ac-
celerations as well as the angular accelerations. Al-
though linear accelerations are measured by the IMU,
ω̇ should be derived from angular rate measurements.
In general, this can be beneficial as it can decrease
computational effort and increase the convergence of
the parameters. However, treating the states as in-
puts also implies that we fully trust the measurements
and do not take into account their measurement noise.
While this might negatively impact the parameter es-
timation, the process will be evaluated based on the
results and their quality criteria.
Furthermore, by treating the states as inputs the re-
sults of the UKF and UKFaug will be closer together
as the estimation of the system noise does not make a
difference in their algorithms anymore. However, the
estimation of measurement noise is still only part of
the UKFaug.
The table including the mean estimated parameters
over the last 100 points as well as their standard devi-
ations σ and σrel can be found in the appendix 8.
Of the numerous aerodynamic coefficients, the lift and
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drag coeffients CL and CD play an important role.
The results of the estimation of their derivatives are
therefore depicted in figure 8 and 9.

FIG 8. Lift derivatives, open loop flight

Overall, the results of the lift derivatives show good
convergence for all filters. As expected, estimations
by the UKF and UKFaug are very close. To evalu-
ate the plausibility of the results, the estimations are
compared to the literature [13]. CL0, CLη and CLβ2

seem to show reasonable results except for the neg-
ative estimation of CLη by the EKF which does not
appear plausible. Further, CLα seems comparatively
small and CLq is significantly too high. The reason for
this might be model inaccuracies, as for example the
assumption that the aerodynamic center and the cen-
ter of gravity fall into the same position, which likely
influences derivatives with respect to the pitch rate q.
Additionally the assumption of no wind in the calcula-
tion of α and β together with the lack of measurement
data of these quantities decreases the expected accu-
racy of the derivatives with respect to the aerodynamic
angles.
The outcome of the parameter estimation of drag
derivatives as depicted in figure 9 shows parallels to
the results for the lift derivatives. The plot of CDq

indicates that the filters have difficulties estimating
coefficients describing the effects of a change in
the pitch rate. Again, this might be due to model
inaccuracies. Furthermore, the overall convergence
is significantly better than provided by the filtering
of the maneuver data as it becomes evident when
comparing the σrel in table 6 and 8.
While all drag derivatives seem plausible when com-
pared to the literature those with respect to the
aerodynamic angles, again, should be used with
caution.
Similarly, the results of the pitch moment derivatives
listed in table 8 seem overall realistic.

The lateral motion behaviour of the aircraft is de-
scribed by the roll, side force and yaw derivatives

FIG 9. Drag derivatives, open loop flight

with their results listed in table 8. The derivative
Cl0, CY 0 and Cn0 describing the aircraft’s behavior
independent of all inputs and flight conditions are all
close to zero indicating little asymmetric properties of
the AC. Like this desired outcome most of the other
derivatives show realistic and satisfactory results. All
estimation plots can be found in [7].
Further, [7] shows that estimating both, parameters
and states, from the same dataset also yielded mostly
realistic results, though some outliers were noted,
likely due to EKF instabilities and the complexity of
the augmented UKF.

5. CONCLUSION

In order to identify the aerodynamic parameters of
the Vitesse V2, a flight mechanical Simulink model of
it was studied and transferred to MATLAB. Further,
different Kalman Filter algorithms including the EKF,
and two cases of the UKF were studied.
After implementing the model dynamics of the air-
craft into the filter algorithms, the filters could be
adjusted further through different parameters. In
the first phase of the optimization the sensor data
and the simulation output were used to improve
the design parameters. By adding sensor models to
the simulation model, a more realistic measurement
output was created to verify the filter functionality.
However, for a more effective optimization of the
filters and eventually for parameter identification, real
flight data was gathered in a flight test campaign with
the Vitesse V2. Using previously defined quality cri-
teria to evaluate the results of the filtering simulation,
the filter parameters were further optimized using the
obtained data.

To estimate the derivatives of the longitudinal motion,
the maneuver data of a 3-2-1-1 elevator input was used.
The UKF with additive zero-mean noise provided the
most accurate tracking of system dynamics whereas
the EKF showed more instability, making it harder to
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balance reliance on measurements and the model. De-
spite noisy state estimates, the EKF’s parameter con-
vergence was satisfactory, similar to the UKF. How-
ever, all filters struggled with estimating CLq and CDq,
possibly due to inaccuracies in the aerodynamic cen-
ter and center of gravity. Unrealistic drag derivatives
were likely caused by the lack of a thrust model, and
assumptions of no wind impacted the estimation of the
derivatives with respect to the aerodynamic angles α
and β.
The data of a bank-to-bank maneuver and a rudder
doublet that was used to estimate the derivatives of
the lateral motion showed similar results concerning
the better performance of the UKF in tracking the
system dynamics.
Lastly, the full set of aerodynamic parameters but no
states were estimated using manual flight data, show-
ing more realistic results than in previous single-axis
analyses, except for issues with CLq and aerodynamic
angles. The larger dataset and simultaneous estima-
tion of all parameters seemed to improve the overall
parameter convergence as well as the concordance with
comparative values from the literature. Despite poten-
tial uncertainties from height and velocity variations,
the results were satisfactory.
Overall, all simulations show that the simplified UKF
assuming additive zero-mean noise gives the best re-
sult regarding the ability to follow the system’s dy-
namics as well as the convergence of the parameters
and the concordance to comparative values. This su-
periority over the general case is possibly because the
latter additionally tries to estimate the system and
measurement noise with the same input data, allow-
ing for more deviations.
Overall, the parameter identification results could be
improved by adding information through measuring
the aerodynamic angles α and β, for example using
free movement vanes or a pressure based probe with
two ports.
Moreover, the modeled aerodynamics could be more
detailed. By determining the position of the aerody-
namic center and by taking into account the lift acting
on the tail and the lift acting on the wing and fuse-
lage separately a more accurate structure of the model
would enable a more precise parameter estimation.
When designing the maneuvers, the transfer function
from the input signal to the control surface deflection
or thrust force was estimated to be a simple gain. More
accurate actuator models, however, could also increase
the quality of the estimation outcome.
Lastly, for real time estimation and adaptive control
the filter can be implemented on the pixhawk 4 mini
flight computer on board the Vitesse.

Contact address:

mona.strauss@ipm.fraunhofer.de
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A. APPENDIX

A.1. Dimensions of Vitesse V2

physical quantity symbol value

tensor of inertia J

0.9006 0 0
0 0.2487 0
0 0 1.1469

 kgm−2

wing surface S 0.61681 m2

wing span b 2.9690 m

aerodynamic chord length lMAC 0.1673 m

mass m 3.1 kg

TAB 5. Dimensions of the Vitesse V2

A.2. Simulation Results

A.2.1. 3-2-1-1 Maneuver

EKF UKF UKFaug

mean σ σrel mean σ σrel mean σ σrel

Cm0 0.52 0.038 7.2 −0.035 9.7 · 10−3 28 −0.67 7.5 · 10−3 1.1

Cmα −1.1 0.083 7.7 −0.83 0.066 8 1.2 0.013 1.1

Cmq −14 0.1 0.73 −14 0.1 0.74 −18 0.09 0.49

Cmη −1.1 0.097 9.1 −1.1 0.096 8.4 −0.98 9.4 · 10−3 0.96

CD0 0.71 1.5 · 10−3 0.22 −1.4 · 10−3 5.1 · 10−4 36 −1.5 0.02 1.3

CDq 1.4 0.026 1.8 3.7 0.089 2.4 7.8 0.067 0.86

CDη −0.7 5.2 · 10−3 0.74 −0.32 0.01 3.1 0.046 7.2 · 10−3 15

CDα −2.4 6.2 · 10−3 0.26 −0.025 3.3 · 10−3 13 4.5 0.063 1.4

CDα2 2.1 7.9 · 10−3 0.38 0.09 9.5 · 10−3 11 −2.7 0.051 1.9

CL0 −4.1 8.4 · 10−3 0.2 0.38 3.8 · 10−3 1 −8 0.027 0.34

CLα 11 0.016 0.15 2.7 0.025 0.94 16 0.047 0.3

CLβ2 −2.8 0.014 0.49 −1.5 0.047 3.3 −3.2 0.033 1

CLη 0.19 0.033 18 0.75 0.063 8.4 1.8 0.039 2.1

TAB 6. Aerodynamic Derivatives Results for 3-2-1-1 Maneuver
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A.2.2. Bank to bank Maneuver

EKF UKF UKFaug

mean σ σrel mean σ σrel mean σ σrel

Cl0 0.13 0.026 19 −0.1 9.6 · 10−3 9.5 −5.6 0.019 0.33

Clβ 0.19 0.052 28 0.78 0.067 8.6 16 0.035 0.22

Clp −1.5 0.086 5.7 −0.029 0.085 300 2.8 0.013 0.48

Clr −0.7 0.096 14 −0.21 0.096 45 −4.8 0.033 0.69

Clξ −1 0.088 8.4 0.068 0.088 130 0.36 0.045 13

Cn0 −0.16 0.015 9.1 0.17 6.3 · 10−3 3.6 −0.72 3.2 · 10−3 0.44

Cnβ 0.12 0.029 24 −0.99 0.044 4.4 2 6.6 · 10−3 0.33

Cnp −0.43 0.063 15 −1.8 0.064 3.5 0.54 2.6 · 10−3 0.48

Cnr 0.78 0.091 12 0.62 0.089 14 −1.2 9.6 · 10−3 0.78

Cnξ 0.94 0.068 7.2 −1.1 0.068 6.2 0.36 8.7 · 10−3 2.4

CY 0 −0.042 4.4 · 10−3 11 0.063 1.4 · 10−3 2.2 0.27 7.2 · 10−3 2.7

CY β 0.013 8.8 · 10−3 68 −0.56 0.011 1.9 −0.95 0.013 1.4

CY p 1.8 0.01 0.57 1.6 0.023 1.4 −4.5 0.011 0.24

CY r −0.23 0.028 12 0.4 0.036 9.2 −6.7 0.036 0.54

TAB 7. Aerodynamic Derivatives Results for bank-to-bank Maneuver
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A.2.3. Open-loop flight

EKF UKF UKFaug

mean σ σrel mean σ σrel mean σ σrel

Cl0 4.1 · 10−3 1.0 · 10−4 2.4 4.7 · 10−3 9.9 · 10−5 2.1 0.01 1.3 · 10−4 1.2

Clβ −4.4 · 10−4 2.4 · 10−4 55 −8.6 · 10−3 1.4 · 10−4 1.6 −0.032 1.5 · 10−4 0.48

Clp −0.07 2.2 · 10−3 3.2 −0.064 2.2 · 10−3 3.5 −0.065 2.2 · 10−3 3.5

Clr 0.039 2.2 · 10−3 5.6 0.034 2.0 · 10−3 6 0.08 2.2 · 10−3 2.7

Clξ −0.096 2.1 · 10−3 2.2 −0.083 2.1 · 10−3 2.6 −0.093 2.1 · 10−3 2.3

Cm0 2.5 · 10−3 1.7 · 10−4 6.9 −1.9 · 10−3 1.7 · 10−4 9.1 −3.5 · 10−3 1.8 · 10−4 5.2

Cmα 0.011 1.4 · 10−3 13 −5.2 · 10−3 1.4 · 10−3 27 0.02 1.4 · 10−3 7.2

Cmq −9.5 0.069 0.72 −9.1 0.073 0.81 −8.6 0.073 0.85

Cmη −0.51 4.3 · 10−3 0.84 −0.5 4.5 · 10−3 0.9 −0.47 4.5 · 10−3 0.97

Cn0 3.8 · 10−3 4.9 · 10−5 1.3 3.6 · 10−3 4.9 · 10−5 1.4 3.9 · 10−3 4.9 · 10−5 1.3

Cnβ 1.4 · 10−3 1.1 · 10−4 8.2 1.5 · 10−3 1.2 · 10−4 7.9 4.1 · 10−4 1.1 · 10−4 28

Cnp −9.7 · 10−3 1.1 · 10−3 11 −0.021 1.1 · 10−3 5.2 −0.022 1.1 · 10−3 4.8

Cnr −5.6 · 10−3 1.0 · 10−3 19 −0.025 1.0 · 10−3 4.2 −0.021 1.0 · 10−3 5.1

Cnξ 5.8 · 10−3 1.0 · 10−3 18 5.5 · 10−3 1.0 · 10−3 19 −1.8 · 10−3 1.0 · 10−3 57

CD0 0.031 7.5 · 10−5 0.24 0.027 8.6 · 10−5 0.32 0.024 8.9 · 10−5 0.36

CDq −0.88 0.011 1.3 −2.3 0.029 1.3 −2.3 0.029 1.2

CDη 0.017 1.1 · 10−3 6.3 −0.069 1.4 · 10−3 2.1 −0.056 1.4 · 10−3 2.6

CDα 0.26 4.7 · 10−4 0.18 0.23 5.4 · 10−4 0.24 0.24 5.2 · 10−4 0.22

CDα2 0.47 2.1 · 10−3 0.45 0.41 2.2 · 10−3 0.54 0.52 2.3 · 10−3 0.45

CDβ2 −0.064 8.0 · 10−4 1.2 −0.034 8.2 · 10−4 2.4 −0.027 8.1 · 10−4 3

CY 0 −8.5 · 10−3 6.9 · 10−5 0.81 −0.011 7.1 · 10−5 0.64 −0.01 7.0 · 10−5 0.67

CY β 8.8 · 10−3 2.6 · 10−4 3 0.016 2.7 · 10−4 1.6 0.015 2.7 · 10−4 1.8

CY p 0.3 1.5 · 10−3 0.5 0.33 1.5 · 10−3 0.44 0.18 1.5 · 10−3 0.81

CY r 2.8 2.3 · 10−3 0.079 2.9 2.4 · 10−3 0.082 2.6 2.4 · 10−3 0.091

CL0 0.22 5.1 · 10−5 0.023 0.18 6.7 · 10−5 0.037 0.18 1.1 · 10−4 0.06

CLα 0.34 2.6 · 10−4 0.077 4.2 · 10−4 2.8 · 10−4 66 −0.014 2.8 · 10−4 2

CLq 24 3.6 · 10−3 0.015 91 0.023 0.025 90 0.022 0.025

CLβ2 −0.42 5.1 · 10−4 0.12 −0.16 5.4 · 10−4 0.33 −0.18 5.4 · 10−4 0.3

CLη −2.1 7.4 · 10−4 0.036 0.19 9.9 · 10−4 0.52 0.18 9.8 · 10−4 0.54

TAB 8. Aerodynamic Derivatives Results for open loop flight, only parameters estimated
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