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Abstract 
Global climate change poses major challenges for the aviation industry for the coming decades. This is 
compounded by rising passenger demand projections. In response to these challenges, aviation stakeholders 
focus on research of novel aircraft technologies and novel designs, that could be possible game changers with 
regards to aircraft technology. The advancements are not only at domain level or at novel vehicle/technology 
aspects, but also at operational, fleeting and energy mix aspects which could translate towards net-zero 
aviation. To consider a broader holistic system of systems perspective of all these areas, aviation impact 
assessment expanded from classic aircraft design to a global fleet level assessment incorporating global flight 
operations. This study evaluates the impact of emerging aircraft technologies and designs on reducing global 
energy consumption in aviation. By employing a comprehensive fleet network methodology, we project future 
global fleet compositions and operations, the research analyses efficiency improvements across various 
routes, coupled with varying entry-into-service timelines, and operational scenarios. This is complemented by 
using linear fleet optimization techniques and a statistical aircraft retirement approach, to model fleet turnover. 
Such an approach enables a dynamic multilevel assessment of the impact of disruptive aircraft technologies-
vehicle-operational strategies together from a system-of-systems perspective, reflecting the interplay between 
technology advancement, fleet integration timing, and overall operational improvements. 
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1. INTRODUCTION 

The aviation industry stands at a critical crossroads as it 
grapples with the dual challenges of mitigating its 
environmental impact and accommodating an ever-growing 
demand for air travel. The urgency to address global 
climate change has spurred ambitious climate goals from 
public and private stakeholders, as well as governmental 
and non-governmental organizations, all aiming to 
significantly reduce global emissions. Notably, the aviation 
sector was responsible for approximately 3.5% of human-
induced global warming in 2019 [1]. Even though CO₂ 
emissions from aviation accounted for just 2.5% of the total, 
the operations themselves in the higher atmosphere lead to 
a greater impact compared to emissions within the lower 
atmosphere [2]. While other industries, such as the 
automotive sector, have made significant strides toward 
achieving net-zero emissions, the aviation industry is under 
pressure to follow suit and push the transition to sustainable 
air transportation. Projected growth further complicates this 
scenario, with passenger demand expected to double by 
2040 compared to 2010 levels [3–5]. To decouple this 
increasing demand from stringent emission requirements, 
aviation stakeholders are focusing on innovative aircraft 
technologies that could revolutionize the industry. These 
advancements span a range of areas, including enhanced 
structures and aerodynamics, the development of 
sustainable fuels, new propulsion systems, and more 
climate-friendly operational strategies. To comprehensively 
address these diverse areas, environmental assessments  

in aviation have evolved from traditional aircraft 
design/mission level assessment to global fleet-level 
perspectives. This shift encompasses not only single-
mission assessments but also holistic fleet network 
assessments. By doing so, it becomes possible to account 
for industry-wide factors that influence the development of 
concept aircraft and acquisition strategies with respect to 
both economic and ecological footprints. Additionally, this 
approach considers the significant impact of geographical 
and altitude-dependent CO₂ and non- CO₂ emissions on 
global warming. The complexity of this holistic approach lies 
in balancing the need for accurate models of the air 
transport system and its future developments with the 
practicality of usability and computational efficiency. The 
ultimate goal is to provide a reliable assessment of aviation 
fleet and emissions, aiding decision-makers in identifying 
critical measures to mitigate the climate impact of civil 
aviation. This study proposes a tool that addresses the 
complex aspects of the Air Transport System (ATS) through 
a structured system of systems approach, with a focus on 
the rapid assessment of its environmental impact. Building 
on insights from a conducted scientific literature review 
concerning the global impact of future aircraft technology, 
the proposed tool and its interconnected models will be 
briefly described. Finally, we will present the tool's 
capabilities in assessing how varying technology levels and 
entry-into-service timelines influence the adoption rate of 
new technologies and the potential for reducing 
environmental impacts. 
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2. LITERATURE REVIEW  

To identify relevant state-of-the-art frameworks for long-
term aircraft technology impact assessment, a systematic 
literature review was conducted. From 11 reviewed 
frameworks, six unique bottom-up approaches were 
selected for detailed investigation, in regards to aircraft 
technology injection modeling, aircraft performance 
modeling, geographical scope, technology considerations, 
and other key metrics. The following section provides a brief 
description of each selected framework. 

Fleet Systems Dynamic Model (FSDM), Technical 
University of Munich: 

The FSDM, developed by the Technical University of 
Munich, is part of an aircraft technology assessment 
framework designed to evaluate the impact of technological 
advancements on global fleet performance, with a focus on 
fuel consumption and CO₂ emissions. This dynamic model 
simulates fleet size and performance by considering aircraft 
allocation, production rates, and network demand. It uses a 
global route network divided into six world regions and 21 
route groups, modeling traffic flows and stage lengths for 
each aircraft type. Demand is captured using metrics such 
as Available Seat Kilometers (ASK), Revenue Passenger 
Kilometers (RPK) and Revenue Ton Kilometers (RTK), 
which are projected to grow by employing compound 
annual growth rates (CAGR). The model utilizes nine 
representative aircraft classes, including new generation 
models with fuel efficiency improvements. Aircraft 
assignment is optimized for fleetwide reduction of fuel burn 
or Direct Operating Costs (DOC), while retirements are 
modeled using statistical retirement curves and later an 
economical approach by using a Net Present Value 
analysis. Aircraft performance is calculated using 
EUROCONTROL’s BADA, with improvement factors 
applied for new technology generations. [6, 7] 

Fleet-Level Environmental Evaluation Tool (FLEET), 
Purdue University: 

FLEET, developed by Purdue University, is designed to 
evaluate the environmental impact of new aircraft 
technologies and aviation policies over a long-term period, 
from 2005 to 2050. It simulates US airline operations with a 
focus on optimizing aircraft assignment and retirement 
decisions to maximize airline profitability while considering 
demand growth, fuel efficiency, and evolving technology. 
The model forecasts future demand on an airport/city pair 
level, based on macroeconomic indicators such as GDP 
growth and price elasticity of air travel, meaning it estimates 
how sensitive demand is to changes in ticket prices. Aircraft 
retirement decisions are modeled using NPV analysis, 
which compares the cost of keeping older aircraft in service 
to the potential savings of replacing them with newer, more 
fuel-efficient models. The fleet is categorized into six seat 
classes, ranging from small regional jets to large wide-body 
aircraft, and includes both current and future generations of 
aircraft equipped with technological advancements aimed 
at reducing fuel consumption and emissions. Aircraft 
assignment is optimized based on route demand, with 
aircraft strategically allocated to routes that maximize 
operational profit. The model also incorporates 
technological progress by simulating future aircraft 
generations, considering improvements in fuel efficiency, 

based on advancements in aerodynamics, and engine 
technology. Aircraft performance is typically modeled using 
the Flight Optimization System (FLOPS), a tool that 
calculates detailed flight performance characteristics such 
as fuel burn, range, and emissions based on specific 
aircraft configurations. Overall, FLEET provides a 
comprehensive framework for assessing how new aircraft 
technologies and policies, such as emissions regulations or 
fuel taxes, can influence the global fleet’s environmental 
performance and profitability over time. [8–11] 

Passenger and Flight Forecast Model, German Aerospace 
Center (DLR): 

This model, developed by the German Aerospace Center 
(DLR), integrates passenger demand forecasts, flight 
volume projections, airport capacity constraints and fleet 
development to provide detailed fleet, traffic and emission 
forecasts. It focuses on specific airport(city) pairs rather 
than aggregated regions, which allows for more accurate 
projections by incorporating individual airport capacity 
limitations. Passenger demand is generated using a gravity 
model, which accounts for variables such as GDP, 
population density, and others to estimate the demand for 
air travel between different locations. These factors 
influence the number of passengers likely to travel between 
two cities, with higher GDP or population often leading to 
increased demand. Based on this demand, the model 
projects flight volumes for the future, ensuring that capacity 
limitations at airports are respected. One of the key features 
of the model is its consideration of airport capacity 
constraints. Many major airports are facing traffic limitations 
especially in terms of runway availability, reducing the 
number of total possible movements per hour. As these 
airports are reaching its capacity limits, the model forecasts 
necessary adaptations, such as using larger aircraft, 
rerouting flights to less congested airports or runway 
expansions. Aircraft assignment is based on both the 
projected passenger demand and the capacity constraints 
of each airport. Aircraft are assigned to routes in a way that 
optimizes fleet utilization while ensuring that operations 
remain efficient within the limitations of each airport. The 
model also accounts for aircraft retirements using ICAO 
statistical survival curves, which statistically predict when 
aircraft will be removed from service based on their age and 
usage. New aircraft are introduced into the fleet based on 
the demand gap created by retiring aircraft and increasing 
traffic needs. For aircraft performance, the model uses tools 
like PIANO-X or BADA. These tools calculate fuel 
consumption, emissions, and performance characteristics 
for different aircraft types under varying operational 
conditions. This allows the model to estimate fuel burn and 
emissions (CO2 and NOx) for the entire fleet over time. [12, 
13] 

Fast Forward (FFWD), German Aerospace Center: 

The Fast Forward (FFWD) model, developed by the 
German Aerospace Center (DLR), forecasts the evolution 
of the global commercial aircraft fleet and the impact of new 
aircraft technologies on CO₂ emissions from 2016 to 2050. 
The model categorizes aircraft by seat class and 
technology group, ranging from current models like the 
A320neo/ceo to future N+2 and N+3 concepts incorporating 
advanced technologies. Aircraft demand is driven by long-
term traffic growth, with new aircraft allocations guided by 
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ICAO’s retirement curves and market segment growth 
projections based on data from ICAO and IATA. Fixed 
demand is constrained by historical production rates, while 
unfixed demand is production unconstrained and includes 
future technologies from N+1 and N+2 aircraft generations. 
Aircraft performance, including fuel consumption is 
modeled using the EUROCONTROL BADA tool. Fuel burn 
reduction scenarios are integrated, accounting for 
improvements in propulsion, aerodynamics, and materials. 
Two key metrics—fleet intensity (CO₂ emissions per RPK) 
and relative CO₂ emissions compared to 2015—are used 
to assess the environmental impact of new technologies. 
This framework offers a robust prediction of aviation’s 
potential to reduce emissions through the adoption of future 
aircraft technologies. [14, 15] 

Bottom-Up Dashboard, University of Toulouse: 

The Bottom-Up Dashboard, developed by the University of 
Toulouse, is an interactive tool for evaluating the impact of 
aircraft technology advancements on the global fleet from 
2019 to 2050. The framework uses logistic functions to 
model fleet renewal, replacing older aircraft with new 
designs across four categories: short, medium, long-range, 
and freighters. Users can adjust parameters such as 
technology injection speed and market share saturation. 
Aircraft performance is modeled using energy consumption 
per ASK, with improvement factors for new technologies 
and downgrades applied for hydrogen-powered aircraft due 
to structural mass penalties (hydrogen tank mass). The 
dashboard is a relative simply tool, but due to its rapid 
nature it can give a quick first estimate of the emission 
mitigation potential of new disruptive technology on a fleet-
level.  [16] 
 
Modular Assessment Framework of WeCare-Project, 
German Aerospace Center (DLR): 

To assess the climate impact of aviation, including non-CO₂ 
effects, within a context of globally diverse socio-economic 
growth, it is essential to model the future evolution of the 
ATS. Within the DLR project WeCare, a modular, four-layer 
assessment framework has been developed and 
implemented using the AIRCAST (Air Travel Forecast) 
model chain to project generic global passenger air traffic 
networks with a high level of detail. This framework uses a 
global network architecture at the city-pair level, allowing for 
detailed quantitative scenarios that encompass anticipated 
passenger flows between specific city pairs, preferred route 
choices, and the number and size of aircraft that will 
operate on each segment worldwide. Collectively, this 
model provides comprehensive insights into future air traffic 
patterns and environmental impacts. [48,44] 

The first layer, the Origin-Destination Passenger Demand 
Network, forms the foundation by estimating the volume of 
passengers expected to travel between specific city pairs in 
future years. This demand is projected using socio-
economic scenarios, including forecasts from Randers 
(2012) and the International Futures Global Modeling 
System (IFs), which offer various pathways based on 
potential global conditions. [45] 

Building on this demand data, the second layer, the 
Passenger Routes Network, models the routes that 
passengers are likely to choose. Historical data from Sabre 

Airport Data Intelligence (ADI) is used to calculate route 
probabilities, capturing preferred travel paths and creating 
a realistic view of passenger flow patterns. This network is 
organized into two sub-layers: the passenger route 
network, representing overall demand on primary routes, 
and the passenger segment network, which focuses on 
specific segments within each route. This layer gives insight 
into how passengers are distributed across routes and 
segments, which is critical for accurately simulating global 
air traffic flows. [48] 

The third layer, the Aircraft Movements Network, focuses 
on determining the types of aircraft and the frequency of 
flights needed to satisfy demand on each route. This 
calculation is achieved through the DLR’s FoAM (Forecast 
of Aircraft Movements) model and the fleet renewal model 
FFWD, which together estimate the share of aircraft sizes 
and service frequencies required to efficiently meet 
passenger needs. This network also consists of two sub-
layers: one classifying movements by seat categories and 
another by aircraft type and generation. Modeling the 
structural evolution of global air passenger flows and 
aircraft movements over time is essential for quantifying 
future changes driven by diverse growth patterns across 
world regions and shifts in airline and passenger behavior. 
These anticipated changes may significantly impact the 
climate effects of non-CO₂ emissions in the future. 
Achieving an early and detailed understanding of these 
structural shifts is strategically important for effectively 
addressing climate change. [49,50] 

With the modeled aircraft movements, GRIDLAB (Global 
Air Traffic Emissions Distribution Laboratory) enables 
trajectory simulations under realistic operational conditions, 
allowing for detailed calculations of emissions' quantity, 
location, and timing. This capability opens up the possibility 
for GRIDLAB to provide a precise understanding of aviation 
emissions and their potential climate impacts. This output 
feeds into the AirClim chemistry-climate response model, 
which is integrated through the RCE framework. Since 
aviation’s climate impact depends heavily on emission 
quantity, species, altitude, and latitude, future ATS 
simulations require a geo-spatial model suite of global air 
traffic to produce relevant, quantitative scenarios extending 
to 2050. [46,47] 

Summary: 

In conclusion, this review of six distinct frameworks 
highlights the varied approaches to air transport system 
modeling, particularly in the scope of fleet development, 
aircraft assignment, and the evaluation of aviation 
technology for emissions reduction, as well as the 
consideration of environmental impact assessment. While 
each framework provides valuable insights, certain gaps 
remain, particularly in capturing dynamic operational 
practices, airline decision-making, and environmental 
assessments beyond only CO₂ emissions consideration. 
Furthermore, the trade-off between accuracy and rapid 
evaluation lays mostly in network scope as well as network 
resolution, depth and flexibility(dynamically) of modelling 
approaches. Based on these insights this study proposes a 
framework which tries to capture a dynamic low-fidelity 
approach of modeling air transport system with relatively 
short computation times. 
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specific runway length constrains. The aircraft performance 
characteristics of these representative aircraft types, 
consisting of our baseline aircraft, have been displayed in 
Tab. 1. For the smallest aircraft, the regional one, we 
considered the TOFL to be just sufficient for operation at 
any airport in the network. This assumption simplifies the 
model by ensuring that all regional aircraft can operate at 
any airport in the network, to account for all operations. 
Additionally, we assumed that the TOFL remains constant, 
regardless of greater flight distance and the corresponding 
increase in takeoff weight (TOW). However, in reality, a 
higher TOW typically leads to an increased TOFL 
requirement. Similarly, the required landing distance 
depends on the actual landing weight, which varies based 
on factors such as payload and reserve fuel. Since landing 
distances are generally shorter than take-off distances, only 
TOFL was considered in the analysis as a restricting 
operational factor to conduct a flight between two airports.  

3.1.3. Aircraft Generations 

The global fleet consists of various aircraft generations, 
each exhibiting distinct performance characteristics, 
particularly in terms of fuel burn and direct operating costs 
(DOC). For this study, the fleet is categorized into four 
generations: old, current, novel aircraft. Tab. 2 outlines 
these categories for the old and current generations, with 
examples of our representative fleet such as the ATR72-
600, A320neo, and A350-900, which serve as baseline 
models for generational performance evaluation. These 
aircraft were selected based on fleet clustering and the 
availability of digitalized models, providing the necessary 
input files for OpenAD and AMC to perform performance 
calculations, as aforementioned. To model older generation 
aircraft, percentual deterioration factors were applied to fuel 
burn and DOC. The primary metric for assessing 
technological influence on performance was mission fuel 
burn, with advancements in airframe and engine 
technologies directly affecting fuel consumption. Historical 
data was used to account for the fuel burn increase in older 
aircraft, primarily due to outdated engine, airframe, and 
wing technologies. 

Market 
Segment 

Old 
Generation 

Detoriation 
Factor 

Current 
Generation 

Regional ATR72, ERJ or 
CRJ - ATR72, ERJ or 

CRJ 

Narrow-Body B737NG, MD80 
or A320ceo +15% A320neo, 

B737 MAX, A220 

Wide-Body B777, A330 or 
B747 +15% A350, A330neo or 

B787 

TAB 2: Fuel performance assumptions for aircraft generation 
modeling [28–30]  

In the regional aircraft market segment, we did not 
differentiate between old and new generations since most 
models entered service in the 1980s. Exceptions, such as 
the newer Embraer E-Jets (EMB-E2), were classified as 
narrow-body aircraft due to their higher seat capacity and, 
as such, were performance-wise represented within the 
narrow-body market segment [31]. It should be noted that 

we use these generic aircraft to model a variety of different 
aircraft types, each with different entry-into-service times 
and varying technology levels within a generation. 
Therefore, these generic aircraft must accurately represent 
the performance of different aircraft types within their 
respective generation (old, current, or novel) and category 
(e.g., regional, narrow-body, or wide-body). However, our 
selection is constrained by the availability of data, requiring 
us to prioritize aircraft with the highest market share within 
each category and generation, while also considering the 
availability of digitized aircraft models. This approach leads 
to greater uncertainty in the performance predictions for 
older aircraft generations, which can be better assessed 
and refined in future iterations of the model.  

To model novel aircraft generations, we are considering 
potential engine retrofits and advanced technological 
improvements—including airframe, propulsion, 
aerodynamics, and systems—for the N+1 and N+2 
generation aircraft. The approach developed by Weber et 
al. [32] provides the foundation for modeling these novel 
aircraft generations, utilizing a systematic framework to 
assess the environmental impact of advanced technologies 
[32]. This methodology begins with the development of a 
comprehensive database of aircraft technologies, informed 
by literature studies and expert insights. The coupling of 
aircraft design and mission assessment tools, such as 
OpenAD and AMC, is then employed to evaluate the 
performance and environmental impacts of these 
technologies on baseline aircraft across various market 
segments and operational ranges. These baseline models 
include aircraft similar to the ATR72-600 (regional), 
A320/321neo (narrow-body), and A350-900/1000 (wide-
body), fitting well within our represented fleet covering 
analogic aircraft sizes. Particularly, the technology 
trendlines have been used to model the narrow- and wide-
body market segments. As part of this, technology 
packages are derived for conceptual aircraft, considering 
entry into service (EIS), compatibility, and the level of 
technology integration. Based on this, specific technology 
factors are employed for each package during the design 
phase. These factors influence various parameters such as 
propulsive efficiency, operating empty weight, and lift-over-
drag ratio, considering both improvements and potential 
deteriorations due to the integration of disruptive 
technologies. In the prescribed study by Weber et al. [32], 
two distinct scenario build-ups—namely conservative and 
progressive scenarios—were assessed for narrow- and 
wide-body concept aircraft. These scenarios differ in 
technology integration and EIS timelines. One key outcome 
is the potential reduction in mission fuel burn due to the 
integration of disruptive technologies, which we will use as 
our key metric to model new technological improvements. 
It should be noted that this study  also assesses the 
potential for non-CO2 emission reductions of novel aircraft 
technologies [32]. Currently, this capability is not 
implemented in our proposed tool, but already includes all 
the essential features needed for future non-CO2 emission 
assessments. Tab. 3 presents the conservative scenario 
build, highlighting the key assumptions and levels of 
technology integration for the narrow- and wide-body 
aircraft concepts. This scenario reflects a more cautious 
approach to adopting advanced technologies, 
characterized by slower technological progress and later 
EIS dates. For the N+1 generation, improvements are 
limited to enhanced engine technologies. In contrast, the 
N+2 generation incorporates disruptive innovations, 
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including ultra-high-bypass ratio (UHBR) engines, geared 
turbofans, hybrid laminar flow, high aspect ratio wings, and 
advanced carbon fiber reinforced polymer (CFRP) 
structures. A linear interpolation approach was used to 
predict future mission fuel burn reduction for varying EIS 
dates, based on the technology trendlines. These values 
refer to potential mission fuel burn reduction in regards to 
the current aircraft generation. 

Market 
Segment 

Current 
Generation 

N+1 
 Reduction Factor 

N+2  
Reduction Factor 

Regional  
ATR72, ERJ or 

CRJ 
-50% 

EIS: 2035 
-100% 

EIS: 2050 

Narrow-Body  
A320neo, 

B737 MAX or 
A220 

-4,1% 
EIS: 2035 

-17,6% 
EIS: 2050 

Wide-Body  A350, A330neo 
or B787 

-4,3% 
EIS: 2035 

-17,2% 
EIS: 2050 

TAB 3: Conservative scenario build-up based on technology 
trendlines from [32] 

In Tab. 4 the progressive scenario assumptions has been 
displayed with earlier entry into service dates as well as 
technological improvements, based for the technology 
trendlines. In this scenario, the N+1 generation 
incorporates the same disruptive technologies as the N+2 
generation from the conservative scenario: UHBR engines, 
geared turbofans, hybrid laminar flow, high aspect ratio 
wings, and advanced CFRP structures. The N+2 
generation in the progressive scenario introduces 
additional advancements, such as an advanced engine 
concept, aero-elastically optimized wings, further 
developments in polymer structures, lightweight cabin 
interiors, and wireless flight control systems. For both 
scenarios, we made specific assumptions for the regional 
market segment 

Market 
Segment 

Current 
Generation 

N+1 
Reduction Factor 

N+2 
Reduction Factor 

Regional ATR72, ERJ or 
CRJ 

-50% 
EIS: 2030 

-100% 
EIS: 2045 

Narrow-Body 
A320neo, 

B737 MAX or 
A220 

-12,5% 
EIS: 2030 

-20,3% 
EIS: 2045 

Wide-Body A350, A330neo 
or B787 

-12,6% 
EIS: 2030 

-22,6% 
EIS: 2045 

TAB 4: Progressive scenario build-up based on technology 
trendlines from [32] 

We assumed that advanced technologies, such as hybrid-
electric propulsion systems, could be implemented more 
rapidly in smaller aircraft, given their lower power 
requirements. In general, the development of hybrid-
electric propulsion systems is progressing faster for smaller 
aircraft, as these platforms are expected to serve as 
testbeds before scaling up to the mid-range market 

segment. By 2045, we anticipate that the regional market 
segment will be capable of operating fully electric vehicle 
without compromising operational range or seating 
capacity, leading to a 100% reduction in the use of 
conventional propellants. Another important factor in 
modeling aircraft generations is the trend of increasing seat 
capacity per aircraft. Over the past decades, manufacturers 
like Boeing and Airbus have increased seat capacity to 
meet growing passenger demand, improving airline 
profitability without adding additional flight frequencies. 
Tab. 5 illustrates this historic growth, with next-generation 
aircraft expected to continue this trend, increasing seat 
capacity by 7-8%. In our model, users can adjust seat 
capacity for successor aircraft generations, with a baseline 
assumption of an 8% increase in capacity for regional, 
narrow-body, and wide-body aircraft. [33, 34] 

Airframe 
OEM Predecessor  Successor  Seat Capacity 

Predecessor 
Seat Capacity 

Successor Dev. 

Boeing B737-800NG B737 MAX 8 189 (1-class) 210 (1-class) +11% 

Airbus A320ceo A320neo 180 (1-class) 189 (1-class) +5% 

Boeing B777-300ER B777-9 396 (2-class) 426 (2-class) +7% 

Airbus A340-300 A350-900 300 (2-class) 325 (2-class) +8% 

TAB 5: Historic seat capacity evolution from predecessor to 
successor generation [18, 35] 

3.2. Global Aviation System Model 

This chapter will delve into the dynamic aspects of our 
framework, starting with the initial network build-up and the 
handling of the network within the simulation loop. The 
network is designed to represent global transport 
performance by capturing all flight connections through 
airport origin-destination pairs. Each pair includes key 
parameters such as distance, operated aircraft type and 
demand, measured in Revenue Passenger Kilometers 
(RPK) and Available Seat Kilometers (ASK), which are 
essential for evaluating the network's capacity and 
performance. 

3.2.1. Initial Fleet and initial Network 
The initial network and fleet reconstruction are based on 
pre-processed historic 2020 data, serving as the foundation 
for forecasting future operations. This dynamically handled 
process begins by loading the pre-processed historic 
network, which includes flight connections represented by 
origin-destination pairs. An identifier list is then used to 
replace the historic operated aircraft with their respective 
representative models, selected through the fleet clustering 
approach. This replacement is applied to each flight 
connection. Following this, identical combinations of origin-
destination pairs and aircraft types are clustered together. 
Specifically, the clustering process aggregates RPK and 
ASK values to simplify the network and reduce complexity, 
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changes in airline operations. For instance, the COVID-19 
pandemic accelerated the retirement of older aircraft due to 
prolonged low demand [38]. Furthermore, production 
capacity shortages—such as those related to the ongoing 
Boeing crisis and Airbus's supply chain constraints—have 
affected retirement patterns, with airlines like Lufthansa 
continuing to operate older aircraft models to meet post-
pandemic strong demand surge [39, 40]. Therefore, using 
historical survival curves for forecasting may be affected by 
future economic developments and policy decisions, which 
could alter the long-term retirement patterns considered in 
our study, as these patterns are based on historical data. 

 
FIG 5: Statistical survival curves adapted from [37] 

In our current implementation, we apply static optimistic-
adjusted survival curves that represent the economic 
retirement of aircraft over the past 50 years, based on 
DLR’s retirement forecast model (Fig. 5).  For each aircraft-
age combination in a given year-iteration, we determine its 
position on the survival curve by modeling the logistic 
function through aircraft category-specific sigmoid functions 
(Fig. 5). This provides the survival probability for each 
aircraft, which is then inverted to the retirement probability. 
The retirement probability reflects the statistical fraction of 
aircraft units that are likely to leave the system. In reality, 
entire aircraft units leave the fleet not fractions, in turn this 
statistical fraction offers an indication of the capacity loss 
associated with aircraft age on a fleet-wide level. Based on 
this, we estimate the number of aircraft per age that will 
leave the fleet annually by summing the retirement rate 
fractions for each aircraft unit within the fleet for specific 
aircraft type and age. After determining the number of 
retired aircraft, we calculated the resulting unfulfilled 
capacity in operations. Assuming a global network operated 
by a single, monolithic airline, the aircraft within the fleet are 
scheduled across various routes. The retirement of an 
aircraft on specific routes creates a capacity gap, which 
must be addressed by replacement aircraft. In this model, 
we assume that the retirement of aircraft leads to a uniform 
reduction in capacity across all routes served by that aircraft 
type, effectively assuming a uniform capacity reduction 
across the entire route network. 

3.4. Aircaft Allocation Modelling 

The core of the aircraft assignment and allocation process 
is formulated as a linear mixed-integer programming (MIP) 
optimization problem. Based on the previously calculated 

retirement and growth gaps, the optimizer is used to 
determine the appropriate aircraft types for each route and 
calculate the number of aircraft required to meet demand. 
The primary objective of the optimizer in selecting an 
aircraft is to minimize fleet-wide operational costs. [6, 9]  

Two distinct assignment strategies were considered. Firstly, 
the assignment of aircraft to routes is described based 
solely on constraints, including runway length limitations, 
operational range capabilities, aircraft availability (in 
production), and coverage constraints per route. The 
optimizer then calculates which aircraft will be operated on 
which routes, and thus the number of aircraft that must be 
allocated. The underlying philosophy is to determine the 
optimal fleet size required to accommodate future demand 
and anticipated retirements, without enforcing any 
production limitations. In the second approach, additional 
constraints on the production of aircraft are introduced, 
limiting the number of aircraft per type that can be produced 
each year. This limitation may result in a redistribution of 
aircraft utilization due to production constraints on the more 
optimal aircraft. Furthermore, the extent to which demand 
can be met is calculated based on the specific number of 
aircraft produced within a given timeframe. Consequently, 
this may lead to a reduction in the actual number of 
transported passengers due to a lack of offered capacity 
(aircraft), which is a consequence of the current rate of 
aircraft production. Currently, feedback regarding the 
impact of reduced demand when aircraft production is low 
is not integrated. As a result, the current assessment is 
limited to the redistribution of aircraft types operated within 
the network. For this study, we will focus solely on the 
production-unconstrained aircraft allocation. Therefore, the 
following section will present the optimization process for 
unconstrained aircraft allocation. 

Production-Unconstrained Optimization Problem 

The primary objective of this optimization problem is to 
minimize the total direct operating cost by assigning the 
optimal aircraft types, while satisfying operational and 
aircraft availability constraints (Eq. 5). The total DOC is a 
function of our decision variable (Eq. 6), which is the 
percentage fraction of ASK acquired by each aircraft type 
per route. To calculate the total DOC, we take the fraction 
of ASK covered by each aircraft type and use the 
aforementioned models to determine the required number 
of flights for the assumed ASK. Based on this, we calculate 
the total flight hours needed. The total DOC per block hour 
is then used to compute the total annual DOC for specific 
aircraft type, considering its ASK coverage and distance. 
The mathematical formulation of our objective function 
incorporates an additional parameter that mimics a price 
value. Typically, airlines aim to maximize overall profit by 
assigning aircraft types to their route network. While other 
factors also play a role in profit maximization, we attempt to 
account for this by introducing an additional parameter 𝛼 
that captures the effect of preferred high-capacity aircraft 
utilization, which can carry more passengers per flight and 
potentially increase profits. This, in turn, can lower costs, as 
it counteracts the total direct operating costs function. In our 
case this additional factor is designed to favor larger 
aircraft, as they can reduce costs more significantly, by 
carrying more passengers. By tuning the 𝛼 parameter we 
can influence and control the assignment of bigger aircraft. 
However, for the current optimization, we have set this 
parameter to zero, so it does not affect the optimization 
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process. We implemented coverage constrain, range 
limitation constraints and the availability of aircraft to 
complete our assignment model (Eq. 7-10). 

Objective function: 
(5) 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑡𝑜𝑡𝑎𝑙𝐷𝑂𝐶𝑖,𝑓𝑡(𝑥𝑖,𝑓𝑡, 𝑡) − 𝛼 ∗𝑓𝑡∈𝐹𝑖∈𝐼

∑ ∑ (𝑥𝑖,𝑓𝑡,𝑡 ∗ 𝑀𝑎𝑥𝑃𝑎𝑥𝑓𝑡)𝑓𝑡∈𝐹𝑖∈𝐼  

 
Decision variable: 

(6) 𝑥𝑖,𝑓𝑡,𝑡 

Coverage constraint: 

(7) ∑ 𝑥𝑖,𝑓𝑡,𝑡𝑓𝑡∈𝐹 = 1, Ɐi ∈ 𝐼 

Range limitation constraint: 

(8) ∑ 𝑥𝑖,𝑓𝑡,𝑡𝑓𝑡∈𝐹 = 0, if  𝑀𝑎𝑥𝑅𝑎𝑛𝑔𝑒
𝑓𝑡

< 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖,Ɐi ∈

𝐼, Ɐ𝑓𝑡 ∈ 𝐹 

Runway length constraint: 

(9) ∑ 𝑥𝑖,𝑓𝑡,𝑡𝑓𝑡∈𝐹 = 0, if  𝑇𝑂𝐿𝐹𝑓𝑡 >

𝑚𝑖𝑛(𝑚𝑎𝑥(𝑅𝑢𝑛𝑤𝑎𝑦𝐿𝑒𝑛𝑔ℎ𝑡))𝑖, Ɐi ∈ 𝐼, Ɐ𝑓𝑡 ∈ 𝐹 

Aircraft availability constraint: 

(10)  ∑ 𝑥𝑖,𝑓𝑡,𝑡𝑓𝑡∈𝐹 = 0,  Ɐi ∈ 𝐼,Ɐ𝑓𝑡 ∈ 𝐹,Ɐ𝑡 ∈ 𝑇: 𝑡 <

𝐸𝐼𝑆𝑓𝑡  𝑜𝑟 𝑡 > 𝐸𝑂𝑆𝑓𝑡 

Parameters: 
• 𝐼: Set of routes 
• 𝐹: Set of aircraft types 
• 𝑇: Set of simulation years 
• 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖: Flight distance on route 𝑖 
• 𝑀𝑎𝑥𝑅𝑎𝑛𝑔𝑒

𝑓𝑡
: Maximum range of aircraft type 𝑓𝑡 

• 𝑅𝑢𝑛𝑤𝑎𝑦𝐿𝑒𝑛𝑔ℎ𝑡
𝑖
: Runway length on route 𝑖 

• 𝐴𝑆𝐾𝑖: Available seat kilometers on route 𝑖 
• 𝐸𝐼𝑆𝑓𝑡: Entry into service for aircraft type 𝑓𝑡 
• 𝐸𝑂𝑆𝑓𝑡: End of service for aircraft type 𝑓𝑡 

The coverage constraints ensure that the total demand 
(ASK) on each route is fully covered by the assigned 
aircraft. Additionally, this constraint ensures that no more 
capacity is transported than necessary (Eq. 7). The range 
limitation constraint ensures that aircraft can only be 
assigned to routes if they have the necessary range 
capabilities (Eq. 8). If an aircraft's maximum range is less 
than the route distance, it cannot be assigned to that route, 
and the decision variable is set to zero, meaning no ASK 
can be covered by this aircraft on that route. Another critical 
operational constraint is the runway length constraint. 
Similar to the range limitation, we set the covered fraction 
of aircraft types to zero if the runway length is smaller than 
the TOFL of the aircraft type (Eq. 9). We assume that the 
TOFL is a crucial factor because, during takeoff, aircraft 
operate at their maximum weight during that mission phase, 

making the takeoff process more demanding. To determine 
the limiting runway length for the route, we retrieve the 
maximum available runway length at both origin and 
destination airports and use the shorter one as the 
constraint. The aircraft availability constraint ensures that 
only aircraft currently in production are considered and 
assigned to our network (Eq. 10). This constraint 
guarantees that the optimization process only includes 
feasible and currently available aircraft options. By 
incorporating these constraints, the optimizer ensures that 
all routes are adequately covered by appropriate aircraft 
types. The optimizer iteratively searches the solution space, 
adjusting the fraction of ASK covered by each aircraft type 
on each route 𝑥𝑖,𝑓𝑡,𝑡, to find the optimal solution that 
minimizes total fleet-wide operating costs while satisfying 
all constraints.  

The optimization problems were implemented using the 
‘PuLP’ library in Python. We defined the optimization 
problem, introduced decision variables, set up various 
constraints (including the new production constraints), 
formulated the objective function, and used the 
‘PULP_CBC_CMD’ solver to find the optimal solution. The 
‘CBC_CMD’ stands for "coin-or branch and cut". The 
problem is first branched into subproblems and then cut to 
only include feasible solutions which hold the optimal 
solution. This was setup using a linear programming model, 
which is commonly used for aircraft assignment and 
allocation problems due to its ability to efficiently handle 
large and complex problems while guaranteeing the optimal 
solution. We used a standard laptop equipped with an Intel 
i7 10th generation processor with 6 physical cores, 
providing up to 2.7 GHz per core, and 32 GB of RAM. The 
optimization problem is solved within 2 to 10 seconds, 
depending on the selected optimization scenario and the 
varying constraints, whereas the whole process, including 
data loading and output generation, takes around 1 to 1.5 
minutes 

4. RESULTS 

Before presenting the results of the aircraft technology 
assessment simulations, we will briefly describe and 
summarize all the required inputs. Specifically, the tool 
requires the simulation time horizon, growth rate scenario, 
seat load factor scenario, and the specifications of novel 
aircraft generations, including general aircraft performance 
as well as production windows. The input data is 
summarized in Tab. 6. In particular, we will conduct three 
different studies, primarily varying in terms of aircraft 
performance, specifically focusing on the inclusion of novel 
generation aircraft. To establish a solid baseline, the 
"Technology Freeze" scenario will illustrate the 
development of the global ATS if only 2020 generation 
aircraft, such as the B737 MAX/B787 or A320neo/A350, 
remain available. This scenario reflects the impact on the 
ATS assuming no further advancements in aircraft 
technology beyond 2020 levels. It serves as a benchmark 
for evaluating the effects of introducing disruptive aircraft 
technologies into the global ATS, which is explored through 
the following scenarios. The conservative and progressive 
scenarios have been thoroughly described in the Aircraft 
Generations section, featuring different EIS dates as well 
as technological improvements reflected in mission fuel 
burn reduction, adapted from Weber et al. [32] (Tab. 3 and 
Tab. 4). Other input parameters, such as the time horizon, 
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growth rate scenario, fleet split, and seat load factor, remain 
consistent across all studies to adequately compare the 
results and focus solely on the effects of new aircraft 
technologies and EIS timing on the global ATS. 

Input 
Matrix 

Technology 
 Freeze  

Conservative 
Scenario  

Progressive  
Scenario 

Simulation 
Identification TF-Base CON-SC PROG-SC 

Time 
Horizon 2020-2070 2020-2070 2020-2070 

Growth Rate 
Scenario 

Airbus GMF-
CAGRs (2023) 

Airbus GMF- 
CAGRs (2023) 

Airbus GMF- 
CAGRs (2023) 

Seat Load  
Factor 

2020-2023 
(Historic) 

 
83% (2024) 

to 90% (2070) 

2020-2023 
(Historic) 

 
83% (2024) 

to 90% (2070) 

2020/2023 
(Historic) 

 
83% (2024) 

to 90% (2070) 

Fleet Split 
Regional,  

Narrow- & Wide-
Body 

Regional,  
Narrow- & Wide-

Body 

Regional,  
Narrow- & Wide- 

Body 

Novel 
Aircraft 
Generations 

None 
Only 2020 

 Generation Fleet 

N+1 (EIS: 2035) 
N+2 (EIS: 2050) 
Perf. (cf. Tab. 3) 

N+1 (EIS: 2030) 
N+2 (EIS: 2045) 
Perf. (cf. Tab. 3) 

TAB 6: Input matrix for conducted studies 

The assessment of novel aircraft technologies on a global 
scale has been structured into three primary domains: 
Traffic, Emission, and Fleet Forecast. The introduction of 
future aircraft into the fleet is primarily governed by capacity 
gaps, which are dependent on retirements and projected 
growth in demand. A critical preliminary step in this process 
is the quantification of future demand, as this serves as one 
of the principal drivers for aircraft injection. Future demand 
has been projected using CAGR from the Airbus GMF 2024 
report, extrapolated from 2043 through 2070. By 2042, 

global demand is expected to reach 20 trillion RPK, 
corresponding to a global CAGR of approximately 3.6% 
(see Fig. 6), which is line with Airbus and Boeing estimates 
[41, 42]. The years 2020-2024 were significantly affected by 
the COVID-19 pandemic, necessitating the use of historical 
seat load factor values and growth rates for this period. It is 
assumed that pre-pandemic traffic levels will be restored by 
the end of 2024, with demand reaching approximately 9 
trillion RPK. From 2025 onwards, the CAGRs provided by 
Airbus have been applied to model future growth per route 
based on the geographical location of origin and destination 
airport. Figure 6 presents the global aggregated values for 
RPK, ASK, and the number of flights, obtained by summing 
these metrics across all routes.  
 
It is important to note that this represents a highly 
progressive demand scenario, which may not be very likely. 
Given the scarcity of studies providing long-term forecasts 
until 2070, we employed a simple extrapolation approach to 
evaluate the impact of aircraft technologies with an EIS 
starting around 2045/2050. Currently, the German 
Aerospace Center (DLR) is conducting a high-level study to 
address this gap, utilizing high-fidelity tools for passenger 
and flight forecasting, as well as considering the 
performance of both current and future aircraft (concepts) 
within the project ‘Development Pathways for Aviation up to 
2070’ (DEPA 2070) [43].  
 
As previously mentioned, the impact of COVID-19 and the 
subsequent recovery are evident across all metrics, with 
exponential growth becoming apparent from 2025 onwards, 
driven by the applied CAGRs from Airbus. Since the same 
operational scenario (including Air Traffic Management and 
Seat Load Factor) was used across all projections, RPKs 
and ASKs remain consistent across scenarios. However, 
the number of annual flights differs depending on the 
scenario. It is evident that the number of flights differ 
significantly between the ‘Technology Freeze’ scenario and 
the progressive scenario. This stems from the aircraft 
seating capacities increase assumptions for N+1 & N+2 
generation, which are not included in the 'Technology 
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As mentioned earlier, the generational composition of the 
global fleet not only impacts the average seating capacity 
and, consequently, the number of flights required to meet 
demand, but also affects overall fleet performance. The 
introduction of new aircraft generations with advanced 
performance characteristics—particularly improved fuel 
burn—plays a significant role. Therefore, we assessed the 
impact of novel aircraft generations on CO2 emissions, as 
these advancements directly contribute to reduced fuel 
burn and emissions (Fig. 8). The figure illustrates the CO2 
emission reduction potential of the progressive and 
conservative scenarios compared to the 'Technology 
Freeze' scenario. The light green area represents the 
emission mitigation potential of the progressive scenario, 
while the dark green area reflects the additional mitigation 
potential of the conservative scenario. The dashed lines 
represent the percentual mitigation potential of the active 
fleet of both scenarios, with color markings corresponding 
to each. 
 
It is evident that the progressive scenario achieves the 
highest emission reductions, as it assumes greater 
performance improvements and an earlier introduction of 
new aircraft generations by five years. Conversely, the 
conservative scenario shows a lower mitigation potential 
due to delayed introduction and reduced performance gains 
from new aircraft generations. Since emissions are also tied 
to the number of flights, both scenarios benefit from 
increased seating capacity, which reduces the number of 
flights needed, further lowering CO2 emissions compared to 
the emissions of the 2020 state-of-the-art fleet. 
 
Breaking this down, from 2020 to 2030, neither scenario 
shows any emission mitigation, as all three scenarios 
(including 'Technology Freeze') utilize the same aircraft 
generations. However, starting in 2030, we see the first 
changes with the introduction of N+1 aircraft. As more of 
these aircraft enter the fleet, emission mitigation potential 

increases due to their growing share. In contrast, the 
conservative scenario does not show emission reductions 
until 2035, when N+1 aircraft are introduced five years later 
than in the progressive scenario. From that point onward, 
the emission mitigation potential increases as the share of 
N+1 aircraft grows, though the progressive scenario 
continues to outperform due to its earlier introduction and 
higher performance improvements. 
 
The dynamic shifts slightly in favor of the conservative 
scenario with the introduction of N+2 aircraft. Although the 
progressive scenario introduces N+2 aircraft in 2045 and 
the conservative scenario follows in 2050, the differences 
in CO2 mitigation by 2070 are relatively minor. This is due 
to two main factors: the performance improvements 
between the two scenarios vary by only 2-4%, and by 2070, 
both scenarios exhibit a high share of N+2 aircraft in the 
global fleet. Consequently, fleet performance 
improvements and emission mitigation potential are driven 
more by the performance characteristics of the aircraft 
themselves rather than the timing and fleet composition. 
The reason for this is the relatively optimistic retirement 
patterns assumed across all aircraft generations. These 
patterns lead to a faster introduction of new-generation 
aircraft, thereby reducing the overall impact of technology 
introduction timing. 
 
The effect of EIS timing and generational share is most 
pronounced between 2045 and 2055, where the 
progressive scenario shows a higher share of N+2 aircraft 
compared to the conservative scenario, as indicated by the 
wider dark green area in the figure. However, even with 
relatively optimistic performance assumptions, a significant 
amount of CO2 emissions remains unmitigated. This is 
especially evident under the high-demand scenario used in 
this study, where CO2 emissions exhibit strong exponential 
growth starting from 2050 onwards. To better assess the 
impact on a global scale, future analyses should 
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