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Abstract
This paper presents the development of safety-critical battery controller software for an electrically powered glider in compli-
ance with aerospace standards. The development process involves several mandatory tasks, such as requirements-based
testing, ensuring traceability, and performing software verification and validation. The embedded software consists of mul-
tiple layers, which are discussed in this paper in the context of a multilevel battery control system. The multilevel battery
system is designed for two primary applications: an electric glider and an unmanned lift-to-cruise vehicle. The functional
algorithm for the battery control system is developed using MATLAB and Simulink, enhanced by the process-oriented build
tool, mrails, ensuring adherence to aerospace standards. The functional code is subsequently linked to the operating sys-
tem layer through the middleware layer. The A53 core of the S32G2 hardware, developed by NXP, is used for the battery
main control application. A custom certifiable real-time operating system, µC/OS-II, providing time and space partition-
ing, hosts the application. Real-time testing of the components will be conducted on a modular hardware-in-the-loop test
bench. This paper aims to present the integration of model-based functional code into the operating system in the context
of safety-critical systems.
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1. INTRODUCTION

In modern aircraft, numerous systems and functions that
were traditionally mechanical are now increasingly con-
trolled by software, as part of a broader trend toward
more advanced avionics and fly-by-wire systems such as
auto-pilot, brake-by-wire, landing gear control, FADEC, etc.
Software plays a crucial role in such safety-critical systems,
where failures can result in significant harm, including
injury, environmental damage, or financial loss. These
systems are prevalent in sectors like aviation, automotive,
healthcare, nuclear power, and industrial automation. Many
of these systems incorporate safety-critical software, which
demands as much attention—if not more—than the hard-
ware itself. In the aerospace sector, numerous examples
exist, such as flight control systems, flight management
systems, collision avoidance systems, autopilot systems,
and mission control systems. Failures in such software
have caused fatal accidents, eroding public confidence
in air travel. However, certification authorities continually
update guidelines to ensure the safety and security of
this software. Not all software in these systems is equally
critical, and a scale known as Design Assurance Level
(DAL) is used to classify the levels of criticality. This scale
ranges from A to E, where A represents the highest level of
criticality and E denotes no criticality.

A set of standards are defined to ensure the software is
safe enough for the humans and the environment. RTCA
(Radio Technical Commission for Aeronautics) introduced
the DO-178C software standard [1], which outlines a set of
objectives that must be met based on the DAL levels. This
standard provides guidelines for software development,
verification, and validation throughout its lifecycle. DO-
178C includes supplements for specific scenarios, such as

DO-331 [2], which focuses on model-based development.
These guidelines cover the development process from
software requirements and architecture to code generation,
verification, and validation.

Similarly, DO-254 [3] applies to hardware development and
provides necessary guidance. Together, the software and
hardware form an embedded system designed to meet
specific system requirements, illustrating the connection
between system development and the development of
software and hardware components. To ensure the overall
safety of system development, SAE International issued
ARP4754 (Aerospace Recommended Practices) [4], a
guideline emphasizing safety in the development of civil
aircraft and systems.

Strict methodologies imposed by the standards reduces
the flexibility of incorporating changes in requirements
at a later stage, for example, adding a new feature after
certification is expensive and efforts consuming. To ad-
dress this challenge, a process-oriented build tool, mrails,
has been developed and successfully utilized in several
complex flight control and avionics software development
projects at both the Institute of Flight System Dynamics
at the Technical University of Munich and the Institute for
Aeronautical Engineering at Universität der Bundeswehr
München [6,7]. The mrails tool supports the development of
safety-critical applications using a model-based approach
with MATLAB, Simulink, and Stateflow, covering various
stages of software development [8].

This particular research focuses on the further development
and integration of the functional software for a multilevel bat-
tery control system. The software is integrated in a cer-
tifiable real-time operating system as an user application.
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FIG 1. Left: ReinerStemme Aero RS 110 [5], Right: Lift-to-Cruise eVTOL Demonstrator

The main aim is to setup the workflow of integrating model-
based generated code as an user application which can be
later loaded on the flash memory of the hardware. The pa-
per is organized into following sections: section 2 explains
the aircraft applications for which the battery control system
is being developed, whereas section 3 describes the multi-
level battery control software. Section 4 provides an over-
look of the software development and verification toolchain
implemented in this research. Section 5 explains the in-
tegration of functional software into the µC/OS-II operating
system.

2. AIRCRAFT SYSTEMS

The multilevel battery system will be applied to two different
aerial systems, as shown in Fig. 1, an electric glider and an
unmanned lift-to cruise vehicle (eVTOL). The electric glider
has an maximum take-off weight of approx. 820 kg, max.
80 kW propulsion power generated by EMRAX 268 with a
clipped 4-blade Helix propeller [9], a wingspan of 20 m and
a maximum glide ratio of 43.

The aircraft is intended to employ a novel propulsion
system involving the multilevel battery system, as shown
in Fig. 2. The eVTOL system is under development and
is intended to be used for demonstrating the capabilities
of a novel propulsion system comprising a ducted e-Fan
with counter-rotating blades. The eVTOl has a 2.1-meter
wingspan and an electric propulsion system comprising
two propellers and one impeller. It has been specifically
designed for observation missions and is equipped with
thermal and optical camera systems onboard. The central
propulsion unit can rotate up to 90°, while the propellers

have deflection angles ranging from 0° to 105° for hovering
flight. In hover mode, yaw and roll control are managed
by the propellers, while pitch control involves all propulsion
units. The vehicle can reach a cruising speed of 30 m/s,
using either the propellers or impeller, allowing flexibility for
extended observation scenarios at lower airspeeds.

3. MULTILEVEL BATTERY SYSTEM

Multilevel systems are a class of battery management
systems, such as the BM3 system discussed by Baver-
tis [10, 11]. The half-bridge system is based on an
integrated 2-switch inverter topology with MOSFET
switches [12]. This topology offers several advantages,
including flexible interconnections between battery cells
to optimize efficiency, match load voltage requirements,
extend battery lifespan, and enhance system fault tol-
erance. The module operates in two states: serial and
bypass. Bypassing defective cells improves battery pack
longevity and serves as a safety feature. The dynamic
configuration of the modules enables the realization of
these advantages. Figure 3 provides an overview of the
battery pack and its controllers. The multilevel battery
management system comprises a main controller, several
BM3 modules, and individual cell controllers for each
module. Together, the main controller and cell controllers
form the battery controller. The main controller gathers
crucial information, such as the current state of each cell
(temperature, voltage, and current), error states from the
switches, the battery pack’s current output, and the DC
voltage required by the motor controller. Based on these
inputs, the main controller determines the necessary con-
nection configuration for the BM3 modules and generates

FIG 2. Electric Drive Train System
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FIG 3. Top-Level Battery Controller Architecture

a configuration array that specifies the configuration values
for each module. Development of the battery cell controller
software is discussed by the author in the conference
paper [13]. This configuration is transmitted to the first cell
controller through the ‘bc_slave_Bus’, which also includes
the module ID. As previously mentioned, there are two
possible states: a series state, represented by the value 1,
and a bypass state, represented by 0. The configuration is
then forwarded via the ‘cl_switch_out_Bus’.

4. SOFTWARE DEVELOPMENT TOOLCHAIN

The safety-critical battery controller software employs a
process-oriented build tool alongside custom and com-
mercial tools to ensure compliance. Figure 4 illustrates
the V-model of development, indicating necessary tools
at each stage. Implementing the V-Model enhances soft-
ware safety, enabling verification and validation at different
stages, aligning with DO-178C/DO-331 standards. This
approach aids in early defect detection and supports

model-based development, maximizing systematic benefits
and fostering collaboration within distributed teams. De-
sign models utilize the process-oriented build tool, mrails,
automating tasks and code generation while aligning with
DO-331 guidelines. The toolchain prioritizes agility for re-
quirement changes and testing, with source management
and continuous integration capabilities.

The process begins with defining stakeholder or customer
requirements, which in turn shape the project’s objectives
and system requirements. Siemens Polarion PLM [14]
is used to document system requirements, software and
hardware requirements, test cases, development plans,
as well as change control and issue tracking. Hardware
development follows a similar process as software, though
it is beyond the scope of this research. High-level soft-
ware requirements, derived from system requirements,
are linked to the software architecture model created
using MathWorks System Composer. Low-level software
requirements are represented by design models developed
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FIG 4. Software Development V-Model with Tools
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FIG 5. S32G2 Boot Sequence

in MATLAB/Simulink. The design models are created
using the process-oriented build tool, mrails, which pro-
vides a modular, model-based development framework in
MATLAB/Simulink. This tool automates tasks such as gen-
erating code for the functional part using Embedded Coder,
in compliance with DO-331 guidelines, and performing
static model analysis. For the application software, low-
level requirements are documented in text form in Polarion,
while the corresponding code is manually written in Eclipse
IDE [15]. After code generation, static testing is carried out
with Polyspace, and simulation testing is performed with
Simulink Tests for the functional part and VectorCAST [16]
for the application part. The functional software is then
integrated into the application framework within the Eclipse
project and tested in real-time using a hardware-in-the-loop
(HIL) testbench. Interfaces between software and hardware
are managed using dBricks [17], an interface management
tool. Various tools ensure traceability throughout the
process, from requirements to testing.

5. BATTERY CONTROLLER SOFTWARE DEVELOP-
MENT

As shown in Fig. 3, the battery controller system consists of
two components: the battery main controller (BMC) and the
battery cell controllers (BCC). The BCC software is devel-
oped using the same development workflow but for different
hardware. The BCCs use the STM32L431 hardware device
with an Arm Cortex-M4 core. The functional software for the
BCC is integrated into the hardware as a bare-metal appli-
cation. This research primarily focuses on the development
of the BMC software and its architecture. Following subsec-
tions explains the complete software stack starting from the
booting till the application code.

5.1. S32G2 Application Boot Process

Developed by NXP, S32G2 hardware is a sophisticated pro-
cessor that offers robust safety features and high perfor-
mance. The S32G2 consists of four Arm Cortex-A53 cores
and three Arm Cortex-M7 lockstep cores. Due to the safety-
critical application,the hardware consists of several steps to
finally get the application running. It must be noted that,
for the BMC application, single-core is used to avoid the
memory interference issue of multicore technology. There

FIG 6. RTOS Software Architecture with Partitioning [18]

are various types of boot processes available for the S32G2
[19], Fig. 5 explains the implemented booting sequence for
the development board S32G274A from MicroSys [19, 20].
A custom board is being developed in parallel, which will
be used for the production purpose. The S32G2 contains
a booting mechanism with a possibility of performing ei-
ther a secure boot or a non-secure boot, with the help of
the HSE (Hardware Security Engine) firmware. In a non-
secure mode, the firmware passes control to the customer
software running on the processor outside of HSE subsys-
tem as shown in Fig. 5, whereas in the secure mode, the
boot mechanism passes control to the HSE firmware which
is running on the HSE_H subsystem. In this research, the
non-secure booting mechanism is selected which directly
triggers the A-53 core.

In this research, a custom U-Boot (Universal Boot Loader)
is used provided by the manufacturer of the development
board [21]. This bootloader is loaded from the external stor-
age, a micro-SD card, and serves the purpose of config-
uring the pins, SoC, clock and the SDRAM. As soon as
the board is powered on, the HSE reads the boot image
(BOOT.bin), copies the code image to the SRAM and starts
the core responsible for running the application, A-53 in this

FIG 7. BMC Software Stack
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case. If the bootloader is not available, the HSE doesn’t
start any of the cores and all the cores remain in reset
[22]. The U-boot then loads the application binary which
is flashed on the QSPI into the SRAM at the start address
for the A-53 core along with the program counter of the pro-
cessor.

5.2. BMC Software Architecture

The application loaded from the QSPI on the SRAM is
explained in this subsection. The A53 core of the S32G2
hardware device is used for the Battery Management Con-
troller (BMC) application [20]. Software development for
this device is supported by S32 Design Studio [15], which
is also utilized in this research. A certifiable version of
µC/OS-II, along with the necessary I/O drivers (UART, CAN
and Ethernet) for this hardware, is provided by an external
vendor. Figure 6 shows the general embedded software
architecture of application binary loaded by the bootloader.
This architecture is referenced by a proprietary document
of Embedded Office GmbH [18]. At the foundation is the
S32G2 Hardware Layer, which includes the A53 cores,
CAN controllers, memory, and various peripherals that
form the physical components of the system. This layer
interacts directly with the hardware components, providing
the computational resources and communication interfaces
required for the application.

Above the hardware layer is the Hardware Abstraction Layer
(HAL), which consists of the BSP (Board Support Package),
the Core OS Port, and the MMU Port. This layer abstracts
the hardware specifics, offering an interface that simplifies
hardware access for higher-level software. The BSP initial-
izes and manages essential hardware components such as
the CAN controller, UART, and timers, while the Core OS
Port ensures that the real-time operating system (µC/OS-II)
can function on the S32G2 hardware. The MMU (Mem-
ory Management Unit) port handles memory protection and
mapping, critical for managing the address space effectively
in a multitasking environment.

5.2.1. Real-Time Operating System

The µC/OS-II layer sits atop the hardware abstraction layer,
providing the real-time operating system functionalities.
This includes task scheduling, interrupt handling, and
timing services that enable the real-time execution of tasks
and the deterministic performance required by safety-
critical systems like the BMC. It ensures that various tasks,
including CAN communication and battery management
operations, meet their real-time constraints.

Memory-Management Unit: The µC/OS-MMU extension
provides an environment where applications can be imple-
mented with the insurance, that no user application can dis-
turb or corrupt any other user application. This insurance is
called “Time and Space Partitioning” and is realized by the
MMU extension [18].

5.2.2. Middleware

Middleware layer provides communication abstractions
that simplify the interaction between the application and
lower-level hardware, such as CAN controller. This layer
simplifies interaction with the communication bus by ab-
stracting lower-level details, enabling the application to
focus on processing data rather than managing communi-
cation intricacies. To understand the middleware layer, it is
necessary to develop a base knowledge of the software call
hierarchy. The Fig. 8 demonstrates the call hierarchy of the
Battery Management Controller (BMC) application within
the µC/OS-II real-time operating system. It begins with
the main() function, which initializes the system, setting up
essential hardware components and preparing the environ-
ment. Following system initialization, the Board Support
Package (BSP) is initialized through BSPInit(), establishing
the necessary hardware abstractions. The PARStart()
function then starts the operating system and sets up the
Memory Management Unit (MMU) for efficient memory
handling. After the system and OS setup, the application is
created in privileged mode through AppStartup(), allowing
the BMC to access critical resources. The application starts

FIG 8. BMC Application Call Hierarchy in µC/OS-II
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running via AppTask(), which transitions control to the main
BMC logic in App_BMC(). Inside the App_BMC() function,
the BMC application runs in an infinite loop (while(1)),
performing core tasks like initializing the battery manage-
ment system (BMC_init()), processing CAN messages
(read and write), and executing its main processing step
(BMC_step()). This call hierarchy ensures that the BMC
runs continuously and interacts efficiently with the system’s
CAN network to monitor and control battery operations in
real time.

The Fig. 9 represents the workflow of the Battery Man-
agement Controller (BMC) application, showcasing the
integration between the CAN drivers and middleware. The
process begins with the initialization of the CAN controllers,
queue, and the installation of a callback function that is
triggered when a CAN message is received. Upon receiv-
ing a message, the callback reads the message from the
CAN driver and checks if the message queue is full. If the
queue is not full, the message is enqueued, and the queue
counter is incremented. If the queue is full, the message is
discarded.

Once the system is initialized, the BMC enters a continuous
main loop where it checks the queue for messages. If the
queue is not empty, messages are dequeued, the queue
counter is decremented, and the messages are processed
by assigning their data as inputs to the BMC. When the
queue is empty, the BMC continues with its control logic,
executing its step function to process the system’s current
state and compute outputs. These outputs are used to
create CAN frames, which are transmitted back through the
CAN driver.

Interface Management Tool: The tool dBricks is used to
manage the interfaces within the component. It integrates
with Simulink, allowing data buses to be imported from the
data dictionary to Bricks and also to be exported into the
Simulink. The tool contains the standard communication
protocols, such as ARINC 429 and 825, with the help of
which the port contents of CAN controllers can be defined.
A code generator is available to translate the data from ICD,
such as dBricks, into code files with the help of templates.
This automatic code generation facilitates the middleware
code development process. Currently, the processing of
CAN frames is written manually, however, in future the code
generator will be used to generate encoding and decod-
ing of the CAN frames to communicate with the application
code.

5.3. BMC Functional Software

At the top of the stack lies the BMC Application Layer,
which contains the model-based auto-generated code
(BMC initializing and step functions in Fig. 9). This
code is generated by the Embedded Coder using MAT-
LAB/Simulink, which is then integrated into the embedded
software environment. The application logic governs the
management and monitoring of the battery system, leverag-
ing inputs from CAN messages to execute real-time control
algorithms. The outputs of this layer are used to create
CAN frames that are transmitted to the cell controllers and
the motor controller.

Figure 10 illustrates the top-level Simulink model used
for the code generation of the BMC. It consists of two
components (model references): ma_soc and ma_config.
The SOC model receives the state of charge, current,

FIG 9. BMC Functional Code and Middleware Code Integration
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FIG 10. Top-Level BMC Simulink Model

and voltage data from all 108 battery cells, as well as the
required voltage command from the motor controller. It
then calculates the number of cells that need to be active
to meet the requested voltage command. This information
is passed to the second model, which determines which
specific cells should remain active based on their state of
charge. The configuration index is then sent to the battery
cell controllers, which activate the cells according to the
configuration array. The actual battery pack voltage and
state of charge are communicated back to the motor con-
troller. The CAN buses operate in duplex mode, meaning
the BMC sends and receives data from the BCCs on one
bus. Similarly, a second bus communicates with the motor
controller, transmitting and receiving voltage commands
and battery pack status.

The process-oriented build tool, mrails, is used to assist the
designing and code generation process by its automated
jobs. The generated code is then packaged and integrated
into the S32DS project. Figure 11 shows the step function
code snippet generated by the Embedded Coder.

FIG 11. BMC Step Function Generated By Embedded Coder

6. CONCLUSION

In this paper, a comprehensive overview of the software de-
velopment process for the Battery Main Controller (BMC) in
a multilevel battery management system is presented. The
development began with a review of aircraft systems and
their relevance to the multilevel battery system, highlighting
the critical role of safety and efficiency in these contexts.
The software development toolchain is explained, detailing
the tools and methodologies used throughout the project,
including model-based design and code generation using
Simulink, supported by tools such as S32 Design Studio for
the S32G2 hardware platform.

The Battery Controller Software Development section
delved into the key aspects of implementing the BMC
software on the S32G2 hardware, with a focus on the
S32G2 application boot process, the software architecture
of the BMC, and the functional software that manages
key operations. The integration of a certifiable real-time
operating system, µC/OS-II, is explained with the memory-
management unit, emphasizing the importance of reliability
and safety in embedded systems for battery management.
Furthermore, the role of the middleware is explained,
illustrating how these components facilitate the CAN com-
munication between the application software developed by
Simulink and the underlying hardware. The middleware is
currently manually developed and follows a certain work-
flow of enqueuing and dequeuing the CAN messages to
extract the frames and assign data to the input of the BMC
step function. Similarly, CAN frames are created from the
output of the step function and then written to the hardware.

Through the structured explanation of each software com-
ponent, the paper demonstrates how the BMC software en-
sures safe and efficient battery management. The combi-
nation of advanced hardware, real-time operating systems,
and model-based development tools has enabled a robust,
scalable solution for managing the complex requirements of
multilevel battery systems, particularly in aerospace appli-
cations. This development framework provides a founda-
tion for further research and optimization of battery man-
agement systems, addressing future challenges in energy
storage, safety, and performance in real-time embedded en-
vironments.
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7. FUTURE WORK

This research has established a preliminary basis for the
development of other safety-critical applications for the
project ELAPSED. The BMC itself is yet to be tested in
hardware-in-the-loop (HIL) simulation as shown in Fig. 12.
The functional requirements of the BMC will be then verified
using the HIL simulations. The current HIL setup offers a
powerful platform for simulating real-time battery manage-
ment scenarios. Future work could focus on expanding the
complexity and scope of simulations to incorporate more
advanced fault injection, extreme operating conditions,
and thermal management strategies. This would allow for
deeper validation of the BMC’s robustness and resilience
in critical situations, such as cell failure or overcurrent sce-
narios. Additionally, the integrated flight dynamics models
would enable closer simulation of actual in-flight conditions
for battery and propulsion systems.

Along with the BMC application, other applications such as
fault handling, charging, discharging will be integrated as
tasks in partitions, leveraging the time and space partition-
ing provided by the MMU. The communication between the
BMC and cell controllers via UART and CAN buses is func-
tional; however, optimizing the latency and bandwidth us-
age of these communication protocols is to be performed.
More efficient data handling between the BMC, BCCs and
the motor controller can reduce communication overhead,
especially during high-frequency control updates, ultimately
improving response times and energy efficiency in real-time
operation. Additionally, the current standard CAN will be mi-
grated to the aerospace standard ARINC 825.

In real-time embedded systems like the BMC application,
ensuring that tasks meet their deadlines is crucial for sys-
tem reliability and safety. WCET analysis is a method used
to determine the maximum time a task or piece of code can
take to execute under worst-case conditions. This is partic-
ularly important for safety-critical systems, where missing a
deadline could lead to system failure or unsafe conditions.
The tools for performing static and dynamic WCET analysis
is already been procured which will assist in determining the
critical execution time, ensure real-time performance, opti-
mize resource usage and provide safety.
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