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Abstract 
The competition of airlines and pressure on cost requires them to continuously improve their business 
processes. For this, a number of innovation projects aim to create data-driven services. To provide the 
information required to enable a data-driven service in aviation, communication networks interconnect systems 
installed in the aircraft as well as ground-based systems. In this paper, a novel modularized communication 
architecture, i.e., interconnecting multiple airborne systems as well as ground-based systems, considering 
known and relevant aviation standards is proposed. To this end, the concept of message broker federation is 
studied and results are used to deduce a generic, modularized and federated communication architecture. The 
design considerations for this communication architecture also comprise the security domain model in 
accordance with the ARINC 664 P5 standard. Thus, means are proposed to secure the broker-based 
communication on an architectural level and to ensure airworthiness security. The viability of the proposed 
generic communication architecture is discussed by creating two specific instances of the generic architecture 
tailored to realize different example use cases. Both resulting federated broker architectures, one for a physical 
distributed demonstrator as part of a research project and the other for a virtual extensible testbed, have been 
implemented and initial validation confirmed its success. 
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1. INTRODUCTION 

The ever-growing competition of airlines and pressure on 
cost requires them to invest in improving effectiveness and 
efficiency of the business processes inside the aircraft 
cabin for more economical operations and for generating 
ancillary revenue. In order to enhance such business 
processes in the age of digital transformation, today’s cabin 
innovation projects follow the approach of designing novel 
data-driven services. For a data-driven service, information 
from various data sources is gathered and processed 
together in order to realize its functions. Examples range 
from introducing Prognostics and Health Management 
(PHM) for cabin maintenance to optimized and 
personalized in-flight catering. The goal of PHM is to 
increase the availability of cabin equipment, e.g., actuators 
of business class seat kinematics or functionality of galley 
inserts like coffee makers, thus, increasing passenger 
comfort and reducing cabin crew workload. Increased 
passenger comfort is also one objective of an optimized and 
personalized catering process, e.g., by providing a service 
to the passenger that allows meal ordering directly at the 
seat based on current availability and passenger 
preferences. The same information can also be used to 
infer an optimal loading of aircraft galleys [1], i.e., which 
type of food, beverages and duty-free products are loaded 
on a specific flight. Thus, communication is not limited to 
intra-aircraft information exchange, but can range across 

the entire air transport system forming a system of systems 
[16]. 
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FIG 1. CSMIM-compliant architecture supporting 
broker managed on module level based on federation 
concepts. 

In scope of the ARINC 853 Cabin Secure Media 
Independent Messaging (CSMIM) standardization project 
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[2], research groups [3] and standardization bodies recently 
worked on common aircraft data models and 
communication protocols enabling the exchange of 
information required for the described passenger, crew and 
airline services inside the aircraft cabin. Although 
introducing an abstract messaging layer, currently, the 
CSMIM specification supports only MQTT [4] as a means 
for transport. That is, networking nodes that are CSMIM-
compliant (CSMIM nodes) use MQTT to communicate with 
a broker. As the standard specifies interfaces, various 
design variations on both, CSMIM node and broker side, 
are possible. 

In this paper, a class of CSMIM-compliant broker designs 
that make use of the federation concept is studied. More 
specifically, an architecture as shown in FIG 1 is 
considered. This architecture allows to create modules as 
a grouping of CSMIM nodes into a CSMIM-compliant 
network. The modules can be connected using the 
Advanced Message Queuing Protocol (AMQP) [5, 6] while 
maintaining the CSMIM-compliant MQTT-based 
communication with CSMIM nodes. This enables 
shortening product development cycles as integration 
activities can already start on module level and existing 
modules can be-reused. Furthermore, aviation regulations 
require to identify, asses and mitigate security risks, cf. 
CS 25.1319 in [22]. Broker federation can technically 
support such mitigation of possibly identified security risks. 
By separating intra-module communication from inter-
module communication, the number of inter-module 
connections can be reduced such that the attack surface is 
minimized. In addition, AMQP-features can be configured 
for the specifics of inter-module connections (blue 
connector in FIG 1). These can be technical, e.g., as 
motivated above, a lossy or low-bandwidth air-to-ground 
connection or contractional, e.g., only certain and agreed 
information should be exchanged between manufactures, 
third parties and their systems, respectively. 

An overview of current trends and the aviation regulatory 
framework with respect to messaging technologies, such as 
CSMIM, AMQP and MQTT, is further explained in 
Section 2. In Section 3 concrete network design 
considerations when employing broker federation principles 
within the aircraft and across the air transport system are 
proposed. A research project demonstrator has been built 
based on these design considerations and a virtual testbed 
has been implemented for further studies. Corresponding 
results are presented in Section 4. Finally, Section 5 
concludes the paper and future research directions are 
suggested. 

2. MESSAGING IN DATA-DRIVEN AVIATION 

The information required for data-driven services as 
introduced in Section 1 is geographically distributed. For 
example, a catering loading list is generated at a caterer 
filling the trolleys, whereas, information on the drinks and 
meals requested by the passengers is known to the cabin 
crew in the aircraft cabin. In addition, information can be 
available in different formats or encodings as data. This 
includes unstructured data such as a loading list written in 
natural language [7]. Within the aircraft cabin, there also 
exists no standardized transformation of information into 
data, but interface control documents are often mutually 
agreed between engineers. As an approach to solve this, 

research groups and standardization bodies have worked 
towards a concept for standardization both, 

• a data model including an encoding specifying a 
transformation from information into data, as well 
as, 

• the communication protocol that allows to 
exchange information described by the data 
model [2, 3]. 

The resulting CSMIM specification introduces a central data 
service (CDS) that is composed of an MQTT version 5 
(MQTTv5) message broker and additional central services, 
managing, for example, discovery of information or 
authentication and authorization. A CSMIM node is 
communicating with the CDS using CSMIM operations in 
order to, for example, provide and receive information 
according to the CSMIM data model. More specifically, the 
CSMIM data model is based on the concept of CSMIM 
objects. CSMIM objects are itself composed of CSMIM 
resources that can be read, written or executed, cf. [2] for 
details of the structure of CSMIM objects and resources as 
well as the semantics of the corresponding CSMIM 
operations. A CSMIM node that exposes one or multiple 
CSMIM objects with its resources to the CSMIM network 
acts as a CSMIM sever. A CSMIM client uses the 
aforementioned CSMIM operations to access the CSMIM 
object. The CSMIM network is specified to be information-
centric, that is, CSMIM clients do not specifically address 
the CSMIM server that exposes the CSMIM object, but the 
CSMIM object itself. 

Although introducing a client-server model, different 
application layer protocols may implement the CSMIM 
operations. The current version of the specification, 
however, only defines a mapping onto MQTTv5. That is, for 
each CSMIM operation, rules are defined as to which 
MQTT control packets shall be used and how each packet 
field shall be filled. This includes, for example, a definition 
of the MQTT topic to be used. 
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        Internal Broker (implementation-specific)
 

FIG 2. CSMIM communication architecture. 

As depicted in FIG 2, the internal design of the CDS, i.e., 
how it is implemented, is, however, not enforced by the 
specification, but is limited to the interaction between the 
CDS and CSMIM nodes via CSMIM operations. The idea of 
this paper is to apply the concept of broker federation to the 
MQTT broker as part of the CDS. By this, no central 
message broker, but a set of multiple internal cooperating 
message brokers route messages between CSMIM nodes. 
As motivated above, this design strategy can support the 
creation of modules, each comprising a standalone 
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CSMIM-compliant network. This enables 

• segregated communication between a set of 
CSMIM nodes due to regulation-driven security 
requirements or business-driven information 
protection requirements as further outlined in 
Section 2.1 as well as 

• natively extending the messaging architecture to 
include multiple aircraft and ground infrastructure 
and services as described in Section 2.2. 

The approaches proposed in this paper specifically address 
the realization of business processes. Business processes 
are processes implemented by airlines, in addition to 
operational processes, for a more economical operation, 
increased passenger service or comfort as well as for 
generating ancillary revenue. Operational processes, in 
contrast, refer to processes that are required by regulations 
on air operations [19], e.g., a passenger safety briefing as 
per EASA CAT.OP.MPA.170. 

Furthermore, for this paper it is assumed that the execution 
or non-execution of aforementioned business processes, 
shall not have any effects on the safety and airworthiness 
of the aircraft [18, 19]. Thus, examples for business 
processes include processes related to catering, e.g., meal 
preparation and distribution as well as corresponding 
reporting activities. 

2.1. Local System Federation Architectures 
within the Aircraft 

The messaging standard CSMIM is specifically designed 
for information exchange within the aircraft cabin. Within 
this geographic scope, i.e., locally within the aircraft, 
contract-based information exchange [3] as well as 
ARINC 664 Part 5 [8] standard compliance could benefit 
from broker federation. In this context, contract-based 
information exchange refers to an agreed information 
exchange with defined communication partners. As 
detailed below, ARINC 664 Part 5 introduces the so-called 
aircraft domain model for safety and security critical 
functions. As this paper focuses on business processes, 
failure conditions (safety) and threat conditions (security) of 
corresponding technical functions must not have any effect 
on the safety and airworthiness of the aircraft. However, 
failure conditions and threat conditions may still have 
effects on the reputation and revenue of airlines, thus, 
impacting the airlines business. In addition, information 
from functions with higher criticality may be required to 
implement certain business processes [17], e.g., aircraft-
related context-information such as the phase of flight or 
departure and destination airport. Thus, the proposed 
concept needs to include a security architecture 
considering aviation security guidelines and principles e.g., 
through the ARINC 664 Part 5 standard, so that it can 
actually be used as a technical baseline for implementing 
novel business processes within the aircraft cabin. 

2.1.1. Contract-Based Information Exchange 

A CDS, as per CSMIM specification, employs 
authentication and authorization services that provide 
functions than could be used to implement contract-based 

information exchanges. A CSMIM node can control through 
tagging who gets access to the CSMIM objects exposed to 
the network. For this, access is defined through a 
combination of a role-based access control model and 
certificates. The CDS is responsible to enforce the resulting 
access control rules. In case of a system design composed 
of equipment distributed through the aircraft cabin, CSMIM 
could be used for intra-system communication fostering 
company-wide harmonization of interfaces with similar 
characteristics. Using specific tagging, intra-system 
messages can be privately exchanged through a shared 
CDS. In order to minimize potential intellectual-property 
discussions, a system broker can be added to the system. 
System broker and CDS broker are intertwined into a broker 
federation in which the system broker handles intra-system 
communication and only previously contractually agreed 
inter-system messages are forwarded to the CDS. 

2.1.2. ARINC 664 Part 5 Standard Compliance 

For developing the security architecture of networked 
aircraft systems, ARINC 664 Part 5 proposes an aircraft 
domain model [8]. This security-by-design approach 
assigns functions of systems to a domain, allows controlling 
interaction as well as expectations between domains and 
eases the risk management required by ED 203A [9]. For 
this, ARINC 664 Part 5 defines four security domains, 
namely: 

• Aircraft Control Domain (ACD), 

• Airline Information Services Domain (AISD), 

• Passenger Information & Entertainment Services 
Domain (PIESD), 

• and the Passenger Owned Device Domain 
(PODD). 
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FIG 3. Multi-domain CSMIM network. Option 1, left: 
Multi-domain CDS. Option 2, right: Federated CDS. 

The ACD requires strict protections as functions of this 
domain handle flight-relevant control information as well as 
functions required for the safe execution of cabin 
operational processes. The AISD contains service 
functions for both flight crew and cabin crew. In the context 
of this paper, these can, for example, be a set of functions 
allowing the cabin crew to identify passengers that ordered 
special meals. The PIESD together with the PODD form the 
counterpart for the passenger services. These domains 
contain functions that are accessed by passenger, e.g., in-
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flight entertainment, ordering food or drinks as well as 
remote controls for the seat. 

In [17] an approach for the of design of data-driven aircraft 
cabin networks, such as a CSMIM network, considering the 
security guidelines and principles described by ARINC 664 
Part 5 as well as ED-203A has been developed. This 
includes that during architecture development it is 
suggested to group functions such that the number of 
interfaces are minimized as this might reduce the overall 
attack surface. 

In a CSMIM network, CSMIM nodes, more specifically their 
assigned functions, could be assigned to different domains. 
If a single CDS is deployed in this network, as, for example, 
shown in FIG 3 (left), it must be designed to separate 
CSMIM nodes assigned to multiple different domains. That 
is, each connection from a CSMIM node in Domain 2 opens 
yet another inter-domain communication link that must be 
secured. By introducing one broker for each security 
domain, as, for example, shown in FIG 3 (right), the number 
of inter-domain connections are reduced simplifying risk 
analysis and possibly implementation. In this architecture, 
only broker have to implement a domain gateway, whereas 
CSMIM nodes interfaces are limited to intra-domain 
connections. 

2.2. Global System of Systems Federation 
Architectures within Air Transportation 

Messaging in aviation is not limited to networked aircraft 
systems, that are designed and maintained according to 
aviation safety and security regulations. Data-driven 
services interact with servers on ground, e.g., functions 
provided by the airline operation center or the airport [10]. 
The scope cannot only be extended geographically, but 
also along the product lifecycle, e.g., for order management 
in the aviation supply chain [11]. 

 

FIG 4. Example global federation architecture based on 
[10]. 

As shown in FIG 4, aircraft cabin networks that comprise a 
message broker, such as a CDS in a CSMIM network, can 
be connected with other aircraft and expanded into the 
ground segment by broker federation forming a System of 
Systems [10]. As detailed below in Section 2.3, message 
broker implementations based on the Advanced Message 
Queuing (AMQ) model [5, 10], introduce the notion of 
message queues. This concept can be used to buffer 
messages in the aircraft and on ground until successfully 
transmitted to ground or to aircraft, respectively. By this, 
AMQ-based federation can handle lossy networks or 
networks that are temporarily disconnected by design. 
Thus, there is no need to specifically handle these links by 
custom built software components. 

2.3. AMQP as a Backbone Messaging Protocol 

The AMQ model as part of the Advanced Message 
Queueing Protocol (AQMP), version 0-9-1, specification [5] 
defines the messages broker semantics. Due to its wide 
range of supported messaging pattern, stated in 
Section 1.2.6 in [5], messages transported through other 
protocols, e.g., MQTTv5 [4], can be tunneled through 
AMQP-based broker [12]. This opens the possibility to 
realize a CSMIM CDS based on an AMQP message broker. 
One well-known AMQP broker with MQTTv5 support is 
RabbitMQ that is written in Erlang [10, 12-15]. 

The main entities of the AMQ model, as depicted in FIG 5, 
are queues and exchanges. Messages are generated by 
producers and then sent towards the broker. A message 
can either be routed directly into a queue or further 
distributed by different types of exchanges. Messages that 
arrive at an exchange are routed to queues based on the 
specific semantics of that exchange type. The routing can, 
for example, depend on bindings that refer to certain 
message properties [5]. If the message matches a binding, 
it is forwarded to bound queue. In the context of CSMIM 
that, currently, employs an MQTT-based application layer 
protocol, AMQ topic exchanges are specifically important. 
A queue is bound to an AMQ topic exchange by defining a 
topic pattern. A producer sending a message to a topic 
exchange appends a topic to the message. If a topic 
matches a topic pattern defined in a binding, it is forwarded 
to the corresponding queue. Messages are forwarded to 
multiple queues in case the topic matches multiple topic 
pattern. By using topic exchanges, the behavior of an 
MQTT broker can be re-constructed. as AMQ topics fulfil at 
least those properties and features of MQTT topics. Finally, 
messages that are buffered in queues can then be 
forwarded to consumers. In case of topic exchanges, as 
indicated above, producers and consumers may either sent 
and receive messages through AMQP or MQTT. 

Producer Broker Consumer

Bindings

Exchange

Federated Exchange

Upstream

        Message Flow

        Configuration

Queue

 

FIG 5. Entities of the AMQ model including federation 
principles. 

Broker federation is not explicitly defined in the AMQ model 
or protocol, but provided as a broker-specific feature. 
Specifically, RabbitMQ, an open source message broker 
software, uses AMQP to implement the communication 
between federated broker and allows to federate 
exchanges as well as queues. 
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For this paper, the RabbitMQ feature of exchange 
federation, as also depicted in FIG 5, is used. On broker 
level, RabbitMQ introduces the notion of a downstream 
(broker) and an upstream (broker). The wording aligns to 
the dependency of these broker instances similar to the 
software engineering discipline, see, e.g., [23]. A 
downstream (broker) specifies and connects to an 
upstream (broker) to create a directed data flow from the 
upstream to the downstream. Then, an exchange can be 
configured on the downstream to be federated onto the 
upstream. As a result, any message published on the 
upstream exchange that has a matching binding on the 
downstream exchange, is forwarded from the upstream 
exchange to the downstream exchange and then delivered 
to any queue that has a matching binding. In order to 
manage temporary connection losses or lost messages 
between upstream and downstream, a queue on the 
upstream-side buffers messages until the connection to the 
downstream is re-established. [6] 

3. DESIGN CONSIDERATIONS FOR BROKER 
FEDERATION ARCHITECTURES 

Airline data-driven business processes can evolve over 
time. Depending on the current market demands, 
processes might be altered, suspended or new processes 
are introduced. As a result, information needs of the 
corresponding technical functions also change and need to 
be implemented by a modified or even newly introduced 
messaging service. Therefore, in this paper, design 
considerations for flexible and configurable messaging 
architectures are presented. As deduced in the previous 
Section 2, the resulting architecture should support a 
harmonized information exchange within the aircraft cabin 
and information available in ground-based systems should 
be accessible by systems installed in the aircraft cabin and 
vice-versa. 

In order to fulfill this need, the generic RabbitMQ-based 
architecture shown in FIG 6 is proposed as a baseline. The 
depicted architecture describes how a single module is 
constructed and any two modules are interconnected 
through RabbitMQ federation. A module may be 
instantiated in the aircraft or as part of the ground-based 
infrastructure. 

The aircraft cabin is composed of multiple modules, each 
being a CSMIM-compliant network on its own, i.e., CSMIM 
nodes can provide and consume information through a 
CDS. A module refers to any grouping of aircraft equipment 
communicating through a shared CSMIM network. 
Depending on how the corresponding systems are planned 
to be certified, a module can represent a system with its 
corresponding equipment, a sub-system or even equipment 
belonging to different systems. The binding between the 
Topic Exchange and the To-Module-i allows to specify 
which information is shared with Module i. Thus, as 
motivated above, this concept allows the CDS of a module 
to be configured such that information not needed outside 
the module actually stays within the module and is never 
shared with other modules. 

To allow CSMIM nodes to connect to a RabbitMQ-based 
CDS, a plugin is available that provides an MQTTv5 
interface to clients [15]. Messages are then received as 
MQTTv5 messages and made available through an AQMP 

topic exchange. If a message passes through this 
exchange that contain information subscribed by a CSMIM 
node, it is emitted as an MQTTv5 message, accordingly. 
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FIG 6. Generic RabbitMQ-based federated CSMIM CDS 
architecture. 

The concept of federated exchanges allows to create a uni-
directional message flow from an upstream exchange to a 
downstream exchange. A bi-directional message flow 
between federated exchanges on two different brokers, as 
depicted in FIG 6, can be established by mutually 
configuring the other broker as an upstream. 

In order to define another broker as an upstream, an IP 
address needs to be specified. Thus, in case a bi-directional 
link is required, the corresponding brokers need to be 
mutually IP-addressable. Here, the property IP-
addressable refers to a pair of two endpoints. An endpoint 
is IP-addressable if its IP address is routable from the other 
endpoint, i.e., the endpoint is directly reachable through its 
IP address from the other endpoint. Especially in case of a 
link between an aircraft system and a ground system, this 
may not be inherently given as the corresponding aircraft 
equipment can be connected through, for example, satellite 
or cellular link performing Network Address Translation 
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(NAT) [20]. This can be solved by, for example, introducing 
a Virtual Private Network (VPN) [12] requiring only one IP-
addressable endpoint to be initially contacted for the VPN 
setup, either in one of the networks to be connected or a 
negotiator. 

The creation of bi-directional communication links carries 
the risk of routing loops. In a setup as shown in FIG 6, for 
example, a CSMIM node in Module i and Module j may 
subscribe to the same topic t. If a CSMIM node in Module i 
publishes a message that matches this topic t, it will be 
routed to subscribers in Module i. Through the To-Module-j 
Exchange and From-Module-i Exchange it will also be 
forwarded to the Topic Exchange in Module j. If messages 
are not tracked, the Topic Exchange in Module j may itself 
route the message not only to subscribers in Module j, but 
also back again to Module i as CSMIM nodes of this module 
subscribed to a matching topic. RabbitMQ, however, 
implements different means to prevent such routing of 
messages [21]. 

4. EXAMPLE SYSTEM AND SYSTEM OF 
SYSTEMS FEDERATION ARCHITECTURE 

The proposed generic architecture for implementing airline 
business processes with federated message brokers is 
exemplarily applied to realize 

- a concrete use case as part of a federated 
research project demonstrator as well as 

- an extensible virtual testbed that can be used to 
do a functional validation of the proposed 
federation architecture and, for future studies, to 
investigate specific features or configurations of 
the generic federation architecture. 

4.1. Physically Distributed and Federated 
Project Demonstrator 

A research project demonstrator required a specific 
configuration of the proposed generic federation 
architecture described in the previous Section 3. In scope 
of the research project, the producer and consumer of 
information do not conform to the CSMIM specification. By 
this, the MQTT Plugins as well as a corresponding Topic 
Exchanges, c.f. FIG 6, can be omitted, resulting in the 
architecture shown in FIG 7. Messages shall be exchanged 
between aircraft modules as well as between each aircraft 
module and a ground station. The modules of the generic 
architecture can, therefore, be mapped to this architecture 
as follows: 

Module 1 ⟼ Aircraft Module 1 

 …  
Module n ⟼ Aircraft Module n 

Module n+1 ⟼ Aircraft Concentrator 

Module n+2 ⟼ Ground Station 

                                                           
1 Exchanges that are not mapped are omitted in the table. 
2 For readability, AMQP nodes as part of the ground station are 

The exchanges are mapped as follows1: 

Aircraft Module i:   
From-Module-n+1 Exchange ⟼ To-Aircraft-Exchange 

To-Module-n+1 Exchange ⟼ To-Ground-Exchange 
Aircraft Concentrator:   

To-Module-1 Exchange 
 ⟼ To-Aircraft-Exchange … 

To-Module-n Exchange 
From-Module-1 Exchange  

⟼ To-Ground-Exchange … 
From-Module-n Exchange 

Ground Station:   
To-Module-n+1 Exchange ⟼ To-Aircraft-Exchange 

From-Module-n+1 Exchange ⟼ To-Ground-Exchange 

In case of the aircraft concentrator, To-Module-i and From-
Module-i exchanges are pooled as no specific handling of 
messages to and from aircraft modules is required, e.g., 
dropping certain topics due to contracts limiting information 
exchange. In addition, in order to ease configuration 
management of aircraft modules, one central aircraft 
concentrator module is introduced, instead of relying on 
direct module-to-module communication. That is, each 
aircraft module needs to configure just one upstream 
broker, namely the aircraft concentrator. The aircraft 
concentrator itself needs to configure one upstream for 
each aircraft module as well as one upstream for receiving 
messages from the ground station destined for aircraft 
modules. Correspondingly, for each aircraft, the ground 
station needs to also configure one upstream for receiving 
messages from the aircraft. 
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FIG 7. Implemented physically-distributed broker 
federation architecture with ground services2. 

The architecture shown in FIG 7 has successfully been 
physically realized as part of the research project 
demonstration. Two aircraft modules are implemented on a 
Linux-based embedded system specifically designed as an 
aviation-certifiable electronic hardware. The modules are 
connected via Ethernet to a certified aircraft cabin server 
running the aircraft concentrator message broker. Through 
the cellular interface of the cabin server, a VPN tunnel 
establishes the connection with a commercial-grade, 
internet-facing Linux-based server representing the ground 
station. In addition to the message broker, the ground 
station server executes applications that interact with 
applications on the aircraft modules through the federated 
message broker. 

omitted. As for Aircraft Module 1, such AMQP nodes 
communicate with the exchanges of the ground broker. 
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This setup also shows that the range of applicability of the 
underlying proposed design considerations is not limited to 
CSMIM CDS federation, but can be re-used for a broader 
scope of airline business processes. 

4.2. Extensible Virtual Testbed 

The research project required a specific configuration of the 
generic architecture depicted in FIG 6, omitting CSMIM-
compliance and dedicated handling of inter-module 
message exchange. In order to comprehensively assess 
the suitability of the proposed approach, an extensible 
virtual testbed as shown in FIG 8 has been implemented. 
Technically, this testbed is based on Linux container and 
virtual networking technology. Compared to the use case 
oriented physical demonstrator, this allows to add and 
remove individually IP-addressable modules without the 
need to add hardware, e.g., additional embedded systems 
or servers. 

Similar to the project demonstrator, multiple aircraft 
modules are interconnected through a central aircraft 
concentrator. In order to configure (blue ellipse CFG in 
FIG 8) inter-module messages, MQTT Exchange and 
From-Module Exchange are separated. As part of CFG, a 
topic filter binding can be specified that defines which 
messages are routed to the federated From-Module 
Exchange. Messages are then forwarded through the Cabin 
Exchange of the Aircraft Concentrator to any other aircraft 
module in case a matching subscription of a CSMIM node 
exists. 
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Exchange
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CFG

 

FIG 8. Implemented virtual testbed for studying 
federated CSMIM CDS. 

For initial functional validation, the architecture shown in 

FIG 8 with two aircraft modules, i.e., 𝑛 = 2, Aircraft 
Module 1 and Aircraft Module 2, and an aircraft 
concentrator has been instantiated in the virtual testbed. In 
each aircraft module one CSMIM node, each with a CSMIM 
server and a CSMIM client, is connected to its module CDS. 
Both CSMIM servers expose a CSMIM object with one 
integer-valued readable resource that is incremented once 
a second. The CSMIM client of both CSMIM nodes 
subscribes to a topic filter covering the topics of both 
readable resources. 

Upon startup of both CSMIM nodes, as expected, the 
corresponding CSMIM clients receive an update of each 
resource once a second. For each resource, each counter 
value is received once, showing that RabbitMQ has 
successfully been configured 

• to receive inter-module messages as well as intra-
module messages and, 

• to prevent routing loops that would result in 
messages being received multiple times. 

Based on the aforementioned example subscriptions, 
messages are forwarded through the exchanges in the 
originating module (MQTT Exchange and From-Module 
Exchange), the aircraft concentrator (From-Module-1 
Exchange or From-Module-2 Exchange, respectively, 
depending on the message origin and Cabin Exchange) 
and the receiving module (To-Module Exchange and MQTT 
Exchange). However, as the CSMIM client in the originating 
module also subscribed to the corresponding topic, if not 
prevented by RabbitMQ, the message could have been 
received twice 

• directly through the MQTT Exchange of its 
corresponding module CDS and, 

• through the loop generated by the Cabin 
Exchange in the aircraft concentrator. 

The validation is limited to basic functional tests to show 
that the proposed federation architecture can be used to 
realize the local and global airline business processes 
motivated in Section 2. The virtual testbed is, however, 
designed such that it can support further in-depth validation 
activities. 

5. CONCLUSION AND OUTLOOK 

Within this paper a generic architecture for realizing airline 
business processes in a system of systems context 
alongside with design considerations for use case specific 
instantiations of that architecture are proposed. System of 
systems in this context refers to not limiting the scope to, 
for example, interacting systems installed in the aircraft. 
Depending on the information need of a specific airline 
business process, the generic architecture supports 
integrating various systems installed in the aircraft as well 
as ground systems into a shared communication network. 
The design considerations as well as the generic 
architecture have been deduced taking into account 
aviation security guidelines and principles. The architecture 
is based on modules, each built around a specifically 
configured RabbitMQ message broker to enable CSMIM-
based intra-module message exchange. Through broker 
federation modules are connected to, additionally, support 
a contract-based inter-module communication. 

An initial validation of the generic broker federation 
architecture has been performed by applying it to two use 
cases. A physically distributed and federated architecture 
following the proposed design considerations has been 
successfully implemented. It is composed of multiple 
aircraft modules and an aircraft concentrator module linked 
through a local network as well as a ground server 
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connected via a cellular-based internet connection. In 
addition, a virtual testbed has been set up that has been 
used to show successful integration of CSMIM-compliant 
nodes into the federated messaging architecture. Through 
virtualization the testbed can serve as an extensible 
platform for future in-depth studies. 

Furthermore, in future work it is planned to integrate the 
proposed approach for federated aviation messaging 
architectures and the related design considerations into 
model-based methods for the development of networked 
aircraft cabin systems. This may include to provide 
guidance and validation suites to ensure compliance with 
the corresponding design principles, security standards, 
and the security domain model. 
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