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Abstract
This paper investigates the use of the Reynolds flocking algorithm to control the behavior of small Unmanned Aerial
Systems (sUAS) within a swarm, focusing on their interactions and dynamics. The motivation for applying Reynolds
flocking in swarm navigation is to optimize UAS performance in complex environments. Rule-based approaches, such as
the Reynolds algorithm, present a practical solution, particularly in obstacle-rich settings where traditional optimization
methods are limited by computational constraints. Through the adaptation of Reynolds flocking principles and exten-
sive testing in simulated environments, this study advances the understanding and practical implementation of swarm
intelligence in sUAS technology.
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1. INTRODUCTION

The rapid technological advancements in the field of un-
manned aircraft systems (UAS) have, in recent years, led
to the exploration of new applications within civilian and
commercial sectors. Small UAS (sUAS) have garnered par-
ticular attention due to their significant potential in areas
such as package delivery, surveillance, and various indus-
trial operations. These systems offer several advantages,
including operational flexibility, environmental sustainabil-
ity, reduced ground risk and the efficient use of human re-
sources. Despite these benefits, the deployment of sUAS
in urban environments presents substantial challenges. A
critical limiting factor is the quality of GNSS reception
in densely built-up areas. Phenomena such as multipath
effects and signal shadowing significantly degrade the re-
liability of GNSS signals, increasing the risk of collisions
with buildings and potential hazards to people nearby. Ad-
ditionally, the limited battery life of sUAS constrains their
operational duration, necessitating frequent and inefficient
returns for recharging, particularly during demanding mis-
sions such as surveillance operations.
A promising approach to overcoming these challenges is
the implementation of swarm navigation, also known as
swarming, in sUAS operations. This strategy leverages the
coordinated behavior of multiple sUAS that interact locally
with one another, enabling the swarm to complete com-
plex tasks even in GNSS-denied environments. Notably, a
high-flyer low-flyer concept can mitigate the issue of lim-
ited GNSS reception. In this scenario, high-flying sUAS
feature GNSS receivers and relay their position estimates
along with an estimate of the relative position of the swarm
members to the remaining sUAS in the swarm allowing for
an absolute position estimate of the low-flying sUAS. This
cooperative method enhances both the accuracy and safety
of sUAS operations in urban environments while offering
a potentially more efficient solution for meeting demand-
ing mission requirements which was shown by the authors
in [1]. Moreover, swarming offers potential benefits in sce-
narios such as search and rescue missions, environmental
mapping, and large-scale infrastructure monitoring, where

multiple sUAS must cover extensive areas efficiently and
respond to dynamic conditions.
Decentralized swarm navigation and task allocation, which
is required to conduct the above mentioned missions, is a
complex challenge that is the subject of current research.
Within this paper, the principles of Reynolds’ flocking are
extended to solve the task of collision-free swarm naviga-
tion. The underlying distributed behavioral model was
first presented by Reynolds in 1987 in [2], which is in-
spired by the collective behaviors observed in nature, such
as the coordinated movement of bird flocks, fish schools,
and other group-living organisms. To translate these be-
haviors into an algorithm, specific rules must be defined to
dictate the actions of individual sUAS within the swarm.
A decentralized control strategy is employed, which har-
nesses the benefits of leaderless swarm intelligence, offer-
ing enhanced robustness and flexibility compared to cen-
tralized systems. In this decentralized model, each sUAS
follows simple, defined rules based on its interactions with
neighboring sUAS. These core rules typically include co-
hesion, separation, and alignment. Cohesion encourages
sUAS to stay close to their neighbors, maintaining group
unity, while separation ensures that sUAS maintain a safe
distance from one another to avoid collisions. Alignment
helps synchronize the movement of individual sUAS with
the overall direction of the swarm. Together, these mecha-
nisms allow the swarm to function as a cohesive unit, with
complex group behaviors emerging naturally from individ-
ual, rule-based actions. To further enhance the swarm’s
capabilities, additional rules such as trajectory following
and obstacle avoidance are integrated. Trajectory follow-
ing ensures that the swarm can navigate along predeter-
mined paths, while obstacle avoidance enables the sUAS to
detect and steer clear of potential hazards in their environ-
ment. These supplementary behaviors enhance the safety
and efficiency of the swarm, allowing it to not only main-
tain formation but also to dynamically adapt to chang-
ing conditions and environments. By incorporating these
principles, swarm navigation enables UAS systems to per-
form complex tasks more effectively, while reducing the re-
liance on traditional centralized control systems. This de-
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centralized, nature-inspired approach facilitates adaptive,
and scalable sUAS operations.
This paper investigates the application of the Reynolds
flocking algorithm for controlling sUAS swarms. The algo-
rithm is tested in various environments, including obstacle-
dense scenarios, to demonstrate the potential of nature-
inspired swarm behavior in enhancing the efficiency and
effectiveness of sUAS operations. Section II delineates the
theoretical framework of Reynolds’ flocking algorithm, in-
cluding the underlying behavioral rules. Section III elabo-
rates on the implementation methodology of the swarming
algorithm, which is applied in the flight tests and simula-
tions described in Section IV. Finally, Section V presents
and critically evaluates the preliminary results of the pro-
posed algorithm.

2. REYNOLDS FLOCKING

For the purpose of controlling a swarm, phenomena from
nature, such as the behavior of bird flocks, are considered
and applied to the existing task following the initial work
of Reynolds from 1987 [2].
Developing an UAS swarm behavior according to the
Reynolds rules involves implementing the principles of
cohesion, separation and alignment between the individual
sUAS. This enables coordinated movements within the
swarm [3].
To identify the requirements for the simulation and flight
testing, it is important to understand how the participating
sUAS in the swarm communicate during flight, as well as
the theory on which the swarming principles are based. In
this case, the approach of Reynolds and the boids model
is used given complete situational awareness of the other
vehicles. In addition, obstacle avoidance and path planning
are taken into account.

2.1. Boids Model by Reynolds

In Reynolds’ approach [4], a model that is based on nature
is provided, such as flocks of birds or schools of fish. The
observation enables the establishment of three basic rules of
behavior, as presented below. Every individual sUAS can
be seen as a boid, which behaves random if no direction or
force is applied [5]. If a force is applied, the boids are then
able to find a configuration, which is (sub-)optimal for the
specified parameters [5].
Depending on the given rule, an interaction range f is spec-
ified to determine the individual attraction, repulsion, and
orientation area of the flock. The interaction range f is a
set parameter in the swarm that constrains the size of the
influenced swarm [6].
The cohesion rule describes the flock centering. It describes
the effect that boids want to stay close to the center of the
flock, which is determined by their neighbors in range of
the attraction area [5, 7]. If one boid is too far away, the
cohesion rule forces the sUAS to get closer to the center of
the flock [8]. To implement this rule in a simulation, the
center of the swarm is calculated as in Equation 1 [3].

(1) Fci =
∑

∀bj∈f

pj

N

Note, pj(xj , yj) is the position of boid j and N the total
number of boids. Fci is the center of the swarm f [3].
With the known center, the cohesion vector for boid i can
be calculated by subtracting the position of boid i from the

position of the center, as shown in Equation 2 [3].

(2) Ci = Fci − pi

The cohesion vector gives the magnitude and direction of
boid i towards the center of the swarm [8]. By implement-
ing only the cohesion rule, the swarm members would con-
verge to a single center of mass causing collisions in real-
life [3].
Therefore, the counter-oriented separation rule describes
the separation between each sUAS to avoid conflicts. To
avoid possible collisions, the boids should stay as far away
from each other as necessary to maintain a safe distance
[5, 7]. In Equation 3 the separation vector for boid i is
determined by taking every boid j in the repulsion zone
into account [3, 8]. The repulsion zone is the threshold at
which the separation rule is activated.

(3) Si = −
∑

∀bj∈f

(pi − pj)

The alignment rule includes velocity matching. The boids
match the direction and speed of their neighbors in one
of the following ways [5, 7]. They can move towards or
away from each other, as well as in the same or opposite
direction [5, 7]. This leads to a coordinated movement of
each boid [8]. To calculate the alignment, the first step is
to determine the average velocity vector for boid i, shown
in Equation 4 [3].

(4) Fvi =
∑

∀bj∈f

vj

N

Therefore, the average velocities from boid i neighbors vj

in range of the orientation area are taken into account [3,8].
In the next step Equation 5 the alignment vector is calcu-
lated [3].

(5) Ai = Fvi − vi

Without this rule, the boids wouldn’t mimic their neigh-
bors and the flocking behavior couldn’t be observed [3].

Figure 1 depicts the three basic principles mentioned
above to describe the movements of a single boid in a
swarm.

FIG 1. Reynolds rules, own illustration in accordance with [9]

With all known vectors derived from each rule the boid
moving vector is computed as a linear combination, shown
in Equation 6 [3, 8].

(6) vi = w1Ci + w2Ai + w3Si

w1, w2 and w3 are coefficients in an [0, 1] interval to deter-
mine the importance of each force acting as proportional
gains [8].
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2.2. Obstacle Avoidance with Trajectory Following

In order to use a sUAS swarm in a real-world scenario, an
obstacle avoidance algorithm must be established to ensure
the safety of an operation [3]. Here, the Force-field based
approach collision avoidance algorithm as described in [10]
is used.
This method uses attractive and repulsive forces to model
interactions between sUAS and obstacles [10]. The Fig-
ure 2 shows the principle of this obstacle avoidance method.

FIG 2. Obstacle avoidance with a flight plan, own illustration
in accordance with [11,12]

The obstacle is surrounded by an obstacle space, which
is the source of the repulsive force and sets a predefined
collision range [3, 12]. If the individual sUAS reaches the
threshold of the obstacle space, the sUAS need to change
their direction [3]. The attractive force is the force around
a target, which the sUAS needs to reach [12]. Using the
known forces, the direction of the resultant force can be
calculated, taking into account both the attractive and re-
pulsive components [12]. Note that the force-field based
method is limited in their application. Limitations occur
in specific obstacle situations, where the sUAS converged
to a local minimum [13].
The attraction force is generated by the target, which in
this scenario is the next waypoint. [14] uses Equation 7 to
calculate the force vector to guide the sUAS swarm to the
next waypoint.

(7) Ti(t) = pdes − pi(t)

The vector Ti(t) points from the current position of sUAS
i pi(t) to the position of the waypoint pdes [14]. The force
causes the sUAS to move in a specific direction towards
the waypoint with a defined magnitude [14].

2.3. Choice of Coefficients

As described above, to achieve desired swarm behavior, it
is crucial to control the magnitude of each rule output rel-
ative to others. In order to determine the weighting and
thus the exact values for the coefficients, numerous tests
were carried out in the simulation and during test flights.
Each of the analysed scenario result in different optimum
coefficient sets. For the given tasks, a feasible set of coeffi-

cients was found through experiments ensuring stability of
the swarm, even under different initial conditions.

3. SIMULATION

The proposed rules were tested in different scenarios in
simulation. This was done to validate the mechanism of
the system to behave as a swarm. The alignment output is
included in the implementation but was not used in further
testing in this work as first results have shown almost no
influence of it when using a high trajectory output.
The simulation makes use of a Unity environment mimick-
ing the real test-range facility for sUAS indoor-operation
at Technische Universität Berlin and features a realistic dy-
namics model of the given sUAS, including Gauß-Markov-
based flight-technical-error modeling. The setup is used
as Software-In-The-Loop evaluation method which builds
upon the Robot Operating System 2 (ROS2), where a
swarm of 10 unmanned aerial vehicles (sUAS) was mod-
eled. Each UAV followed a simplified kinematic model for
movement and interaction. The environment was created
to simulate realistic conditions, including different obstacle
fields. The control and communication between the sUAS
were handled through one ROS2 node per sUAS commu-
nicating via the ROS2 publisher and subscriber concepts,
ensuring accurate output calculations for cohesion, sepa-
ration, and obstacle avoidance. Identical to the real test-
range sUAS, the sensor out- and the control inputs of the
simulation run at 10Hz, allowing for detailed analysis of
swarm dynamics and behavior throughout the simulation.

3.1. Scenario 1: Forest

In order to simulate a realistic environment for a swarm
mission, a flight through a forest was chosen. Considering
the average spacing of trees in a very dense forest, the
distance between each cylinder, representing a tree, is fixed
to 1.5m. This environment enables to test in specially the
obstacle avoidance implementation. The swarm should be
splitting up to avoid the trees but find together after the
obstacles to follow the common flight plan. In Figure 3 the
flight track of each swarm member is shown for a sample
execution of the experiment. The waypoints are plotted in
orange, showing that the swarm is following the flight plan
and only deviating slightly due to obstacle avoidance and
the swarm dynamic. The following of a given flight path is
illustrated by Figure 4 when each of the reached waypoints
results in a decrease of the output until the next waypoint
is targeted. During all executions of the experiment, no
collisions occurred.
To ensure safe operation of the swarm, a safe distance be-
tween the swarm member needs to be maintained by apply-
ing the separation output. For this simulation experiment,
no conflict was detected with a distance below 0.4m. Only
two near approaches between sUAS 1/5 and sUAS 1/8 oc-
curred, with a distance of 0.44m between the sUAS.
The scenario enables to test in specially the obstacle avoid-
ance implementation. The swarm should be splitting up to
avoid the trees but find together after the obstacles to fol-
low the common flight plan. During the simulation, no
problems with obstacle conflicts occurred, as a minimal
distance of 0.26m between an obstacle and all sUAS is
guaranteed.
The plot of the obstacle avoidance output in Figure 4 shows
the influence of each obstacle on the output visible when
the sUAS enters the threshold area around an obstacle. A
better on map magnitude of the repulsive output around
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FIG 4. Forest Scenario - Trajectory and Obstacle Avoidance
Output acting on sUAS 2

each obstacle is given in Figure 5. For a better visualisa-
tion, only the recorded data sets from four sUAS are used
in Figure 5. The increase in the obstacle avoidance output
is visible for each sUAS getting near one of the represented
cylinders.

3.2. Scenario 2: V-Formation

In this scenario, obstacles were arranged in a V-formation
to assess the boundaries of the sUAS and the swarm as an
overall system. In particular, the behavior of the swarm
members to act as a swarm in a highly restrictive envi-
ronment is to be examined. The V-formation of obstacles
created for this purpose has a distance of 0.3m in both the
x- and y-directions.
In the simulation, it is observed that the sUAS disperse
in front of the V-shaped obstacle formation due to the
influence of the obstacle avoidance output. None of the
sUAS successfully navigate through the obstacle gaps, as
the pre-set threshold of 0.5m does not permit sufficient
clearance between the obstacles. Instead, to reach the
designated waypoints, the sUAS follow the contour of the
V-formation, eventually regrouping once the end of the
obstacle formation is reached.

By selecting the center of the swarm as the reference for
trajectory following, the waypoints are reached success-
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FIG 5. Forest Scenario - Heatmap of the Obstacle Avoidance
Output Magnitude

fully. This approach ensures that the sUAS navigate col-
lectively around the obstacles, rather than individually tar-
geting each waypoint. The flight path of the swarm, along
with a visualization of its center, is illustrated in Figure 6.
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FIG 6. V-Scenario - Flight path of sUAS

When evaluating the respective outputs, several patterns
emerge during the execution of the flight plan. Notably, as
the swarm encounters the V-shaped obstacle formation, the
sUAS become increasingly separated, leading to a gradual
rise in the cohesion output over time. This trend, visi-
ble in the graph, indicates the system’s effort to maintain
swarm integrity as the sUAS attempt to navigate around
the obstacles. The increase in cohesion output ensures that
the swarm remains compact by pulling the sUAS back to-
gether once they have passed the obstacle formation. This
behavior is critical for maintaining swarm coordination and
preventing excessive dispersion, particularly in challenging
environments. Figure 7 below illustrates the cohesion out-
put norms for each individual sUAS, with distinct increases
corresponding to the moments of swarm separation and re-
grouping.
In Figure 8, it can be observed that the distance to the
closest waypoint decreases over time as the sUAS move to-
wards it. Once a waypoint is reached, the next waypoint is
selected as the new target. This process leads to a repeated
drop in distance to the waypoint, followed by a transition
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FIG 7. V-Scenario - Cohesion output over time

to the next target. As each new waypoint is selected, the
trajectory output increases, guiding the sUAS toward the
newly assigned target. The increase in output ensures that
the swarm remains on track and adjusts its flight path ac-
cordingly.
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FIG 8. V-Scenario - Trajectory output over time

In Figure 9, the obstacle avoidance output becomes crucial
as the swarm approaches obstacles. The obstacle threshold
represents the minimum safe distance between the sUAS
and the obstacles. When the sUAS get too close, the avoid-
ance output escalates, pushing them away to avoid colli-
sions. If the distance exceeds the threshold, the system
reduces this output, allowing the sUAS to maintain their
planned trajectory while keeping a safe margin from the
obstacles.
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FIG 9. V-Scenario - Obstacle avoidance output over time

An analysis of obstacle avoidance in relation to the map
highlights the repulsive outputs experienced by the sUAS
along the obstacle formation. This phenomenon is visu-
ally represented in Figure 10, where the distribution of

repulsive outputs along the obstacle formation is clearly
illustrated. Moreover, it can be observed that the avoid-
ance output intensifies at the initial phase of the formation.
This increase is attributed to the concentration of sUAS in
that area simultaneously, which amplifies the influence of
outputs like separation and trajectory adjustment outputs.
This localized congestion leads to a higher cumulative ef-
fect of these outputs on the sUAS motion.
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FIG 10. V-Scenario - Heatmap

4. FLIGHT TEST

As an application to a real-world scenario, multiple flight
tests were performed to evaluate the Reynolds flocking be-
havior in a practical setting. The flight test was conducted
in a controlled indoor environment using a swarm of 3
sUAS. The indoor environment features Ultra-Wide-Band
transceivers as anchors and beacons for centimeter-level
indoor-navigation accuracy using DJI Tello EDU sUAS.
The test area was defined by four waypoints, and no ex-
ternal obstacles were included in this scenario. The sUAS
followed the same control logic as the simulation, with real-
time adjustments to trajectory and separation outputs.
Data was logged at 10Hz to analyze the system’s perfor-
mance in maintaining stable swarm behavior and ensuring
safe distances between sUAS during the flight.
The flight test implemented a modified trajectory control
logic compared to the approach described in section 2. In
this new logic, a waypoint is considered reached when each
individual sUAS comes within a distance of 1m from the
waypoint, as opposed to basing the condition on the center
of the swarm. The flight paths of the sUAS are illustrated
in Figure 11 below, which demonstrates that the Reynolds
flocking system successfully guided the sUAS along the in-
tended flight plan, adhering to the proposed waypoints.
The flight test allowed for a detailed analysis of several
key aspects regarding the system’s ability to function as a
Reynolds flocking model. Both the trajectory output and
the separation output exhibited significant characteristics
during the test. Figure 12 illustrates the trajectory output
as a function of the distance to the next waypoint.

Initially, the trajectory output appears to remain constant,
prompting a more detailed analysis. Figure 13 and Fig-
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FIG 12. Flight Test - Trajectory output over time

ure 14 illustrate the components of the trajectory out-
put for sUAS 1, plotted against the distance in the x-
and y-directions to the next waypoint, respectively. Ac-
cording to the specified flight plan, movement towards the
next waypoint results in changes solely in either the x- or
y-direction. The observed discontinuities arise due to a
change in the target waypoint. The relationship between
the trajectory output and the distance is evident, while mi-
nor deviations can be attributed to short temporal offsets
in the calculation of the relative position. These offsets
lead to brief mismatches between the actual and target
waypoints.
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FIG 13. Flight Test - Trajectory output X component over time

The following Figure 15 depicting the average separation
output in dependence of the distance to each sUAS, shows a
stable pattern, indicating that the system effectively main-
tains safe distances between sUAS throughout the test.
This stability suggests that the separation output is func-
tioning as intended, preventing sUAS from clustering too
closely and ensuring collision avoidance.
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FIG 14. Flight Test - Trajectory output Y component over time
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FIG 15. Flight Test - Separation output over time

In addition, the plot of the average distance between sUAS
highlights the system’s capability to keep the sUAS at
a consistent spacing, closely following the target thresh-
old of 2 meters. The sUAS maintained a steady forma-
tion, balancing the cohesion and separation outputs. It
can be observed that with decreasing distance between the
sUAS, the separation output increases to prevent any col-
lisions. This balance is crucial for achieving coordinated
flight without erratic movements or significant deviations
in distance.
Overall, the test confirms that the system achieves both
stability and adaptability, successfully maintaining swarm
cohesion while managing inter- sUAS spacing using the
experimentally chosen coefficients.

5. CONCLUSION

The results from the implementation and subsequent
flight tests offer valuable insights and identify key ar-
eas for further investigation. In the simulation of a
forest-like scenario, the swarm exhibited effective obstacle
avoidance, while maintaining cohesion and adhering to
a pre-determined flight path. The V-shaped scenario, in
particular, highlighted the algorithm’s capability to split
and regroup, demonstrating its potential applicability in
more complex and dynamic environments. Transitioning
to indoor flight tests involving three sUAS (small Un-
manned Aerial Systems) provided critical data on the
algorithm’s practical implementation, where the swarm
successfully navigated toward predefined waypoints, all
while maintaining safe inter-vehicle distances.
This study highlights the successful advancements made to
the original three Reynolds rules, including the implemen-
tation of the separation and obstacle avoidance rule. One
of the significant outcomes is the demonstration of effective
waypoint navigation in both simulated and indoor flight
scenarios. The analysis shows that the swarm maintained
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stability concerning safe inter-vehicle distances and transi-
tions between waypoints, indicating that the system strikes
an effective balance between governing control outputs.
However, swarm stability remains crucial for practical ap-
plications. While the system generally maintained stabil-
ity, instances of oscillatory behavior were observed, partic-
ularly in constrained spaces or during sudden environmen-
tal changes. Given the dynamic nature of sUAS swarm
operations, further investigation into the algorithm’s sta-
bility under these conditions is required. The complexity of
implementing swarm algorithms presents challenges for the
exact replication of indoor test results, as behavior tends to
differ between simulation and flight tests. This underscores
the necessity of developing reproducible testing methodolo-
gies, including improved obstacle avoidance strategies. The
behavior of the swarm is highly sensitive to the parameter-
ization of the coefficients, making the identification of an
optimal configuration difficult for different mission profiles.
Dynamic thresholds based on environmental conditions or
specific swarm configurations could be explored in future
work. In this context, refining the conditions for waypoint
achievement could further enhance the adaptability of the
algorithm.
In conclusion, this paper demonstrates the potential of
Reynolds rule-based algorithms for controlling sUAS
swarms in both simulated and indoor environments. The
results provide a foundation for further refinement of the
key topics discussed.
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