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Abstract

This work in progress paper deals with the potential and the implementation of swarming concepts for the use
case of search and rescue missions in afforested areas. Unmanned vehicles provide a valuable instrument to
deal with dangerous situations as the lack of an operator reduces human exposure to environmental hazards.
To ensure the mission and the funcionality of the unmanned vehicles against failures and losses, swarming
is a promising solution. After defining the problem, we present the goal of this work: A robust and reliable
swarming structure that is capable of being deployed close to forest fires to scout the dimension of the forest
fire and search for survivors, both humans and animals. After detecting survivors, the follow-up task will be to
lead them away from the fire towards safety.
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1. INTRODUCTION

In the recent years, highly automated robotic sys-
tems have shown the potential to take over various
complex tasks in different environments, including
air, land, maritime, and space domains. These sys-
tems enable a personnel-efficient and cost-effective
execution of hazardous and tedious missions, that
can be accelerated by using (multiple) autonomous
or automated agents organized in teams or swarms.
An agent is here to be understood as an entity of
any kind which interacts with its environment. In this
work, the current state of the art for robotic swarm
applications will be discussed as well as their specific
use to protect humans and animals alike from fires.

1.1. Multi-Robot Systems

Teams or swarms have the potential to operate more
efficiently and to be more robust in adverse condi-
tions as opposed to single vehicle systems. As groups
of humans and animals show, multiple of them can
achieve tasks that a single one cannot achieve, such
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FIG 1. Multi-Robot Systems, based on Dias et al. [1],
modified to also include the teaming aspect.

as hunting large prey, building complex structures or
dividing and specializing on different tasks. In search
and rescue missions, Multi-Robot Systems (MRSes)
are capable of searching on multiple locations simul-
taneously or helping multiple victims of a catastrophe
at the same time. According to Dias et al. [1], MRSes
usually refer to multiple mobile robots, not to station-
ary robots as in a factory at production lines. Figure 1
shows robotic swarms and robotic teams as different
subsets of MRSes in general.

1.2. Autonomous or Automated Systems

Autonomous Systems are able to take responsibility
off from human operators by making own decisions;
this goes along with the challenge to assure the qual-
ity of the decisions. Humans heavily rely on their abil-
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ity to judge actions and evaluate if a decision is good
based on common sense or rules of engagement. In
an autonomous system, it must be proven first that
a decision making process for an autonomous agent
will not cause fatal behaviour for the agent or its en-
vironment. On the other hand, autonomous decision
making reduces the scope of humans. It also pro-
vides the ability to save staff for a certain task and the
ability to keep staff away from potentially dangerous
situations. Autonomous systems are also in advan-
tage when it comes to reaction time and communica-
tion speed in between agents: while humans need to
get information onto a man-machine interface (visual
or acoustic) and need to focus on one information at
a time, robotic agents can receive multiple streams of
digital information and process them simultaneously.
Here, the human as a bottle-neck can be minimized
in the process chain, if left with only supervisory func-
tions.

1.3. Use Case

Autonomous agents are valuable tools for the detec-
tion and treatment of natural disasters such as forest
fires: they are available in large numbers to overfly
forests, detect fires and map the areas affected by
fires. Furthermore, they can approach the fire much
closer than human pilots could safely do and detect
humans and animals in danger. In addition, without a
pilot, the size of rotorcraft can be reduced and small,
autonomous rotorcraft can breach below the forest
canopy to guide humans or chase animals away from
a threat. If communication is interrupted, some of the
agents are required to work as independent groups,
coordinating their tasks locally.

2. SWARMING VS. TEAMING: A COMPARISON

While swarms and teams both are multi agent sys-
tems and hierarchically even, Schulte et al. [2] give
an insight on the difference between swarming and
teaming: a key difference is having or not having pre-
defined roles among the members.

2.1. Swarming

In swarming, agents are held relatively simple, the
complexity arises from the swarm structure [1, 3].
They are supposed to be homogenous in the truest
definition of a swarm, where they have the same
capabilities and are equally useful for all possible
tasks. That actual swarms can deviate slightly from
this, as shown in the caste system of ant or termite
swarms, where they have soldiers and workers.
Another key criterion that is important for swarms is
their local, decentralized behaviour; there is no cen-
tral decider that controls all agents, agents are not
even required to have a connection to all other swarm
members. Agents make local decisions based on the
local information they have.
Schulte et al. [2] also add that since swarms are de-
centralized and act local, addressing them for task

assignments etc. is not simply done by communi-
cating with a single agent. This communication has
to be done with the swarm as a whole, which does
not exist as a tangible object. Therefore, they de-
fine a swarm avatar as communication interface. This
avatar represents the whole swarm, communicates
with the swarm’s supervisors and transmits the infor-
mation from and to the individual agents.

2.2. Teaming

In teaming, on the other side, agents can fulfill specific
roles and know about the other roles in their team.
For fulfilling different roles, they can also be built dif-
ferently to be adapted to their roles. In robotics, teams
can be purely robotic or they can also include humans
that work together with robots.

3. AUTONOMY VS. AUTOMATED

Often it seems that systems are called “highly auto-
mated” or “autonomous” synonymously. Adler [4] ex-
plains what seperates highly automated systems from
autonomous systems in different ways concerning un-
derstanding, responsibility and dependence.

3.1. Autonomous Systems

With multiple citations, Adler [4] relays the image that
autonomy stands for independence. However, he
also goes into detail that systems today are well con-
nected among each other to get as much data about
their current situation as possible. He introduces that
autonomous systems can be open or closed: while
open autonomous systems are considering external
information in addition to their own perception for
their decisions, closed autonomous systems only rely
on their own situational awareness. He points out
that more information makes decisions better and
faster; prediction of other agents is more useful, if
these agents provide information about what they
intend to do. Many open autonomous systems that
work together form a digital ecosystem.
From the perspective of understanding, autonomous
systems are described by Adler [4] as systems
where the developers cannot directly predict how
they work. Therefore, with the loss of predictability,
control is minimized as well, which leads to a shift in
responsibility.
Furthermore, a criterion for autonomy is if a system is
able to take responsibility: Adler [4] explains here that
a truly autonomous system takes own responsibility
and therefore does only require little supervision.

3.2. Highly Automated Systems

In opposite to the aforementioned autonomy, highly
automated systems lack these criteria an autonomous
system has [4]: highly automated systems still func-
tion with almost no human interference, as they are
“highly automated”, but they are not necessarily able
to cope with completely unexpected, unknown situa-
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tions. This also leads to the fact that these systems
need supervision and human intervention in critical
cases.
When it comes to understanding, these systems can
be completely predicted, since everything can be pro-
grammed or planned in advance. Since humans plan
or program the actions ahead, this also indicates that
responsibility remains more with them as with auton-
omy, as they knowingly let the system act in certain
ways.

4. SWARMING: STATE OF THE ART

Autonomous robotic swarms are already under
research in different aspects – definitions and re-
quirements are already given. As presented in
section 2, swarms differ from other forms of multi-
agent systems by each agent focussing on a local
environment to achieve a global behaviour of the
whole swarm. With that come some definitions that
the agents must fulfill to form said swarm, as Dias et
al. [1] introduce:
• Decentralization: swarms are defined as being de-

centralized, it is a main feature. Each agent makes
its own decisions without depending on a central
decision hub.

• Self-organization: the agents are managing them-
selves based on feedback they receive from their
environment.

• Homogenity: swarms are made of similiar agents
that do not specialize on certain tasks. Every agent
should be able to be swapped and still function in
its new place.

• Small individual competency: single agents are
expected to be as simple as possible; they alone are
not supposed to perform all tasks that the swarm
can accomplish as a whole.

• Distribution of information: information is mainly
shared locally among neighbours. Swarm agents
are not necessarily aware of the state of all other
agents.

• Robustness: the swarm continues to work properly
if agents fail or get damaged. This forbids depen-
dence on individuals.

• Scalability: agents can be added and removed
without compromising the swarms operationability.
This is also important to ensure robustness.

• Parallelism: since each agent decides for itself,
all decicions are made parallel to each other and
do not need to be processed sequentially. This
prevents a swarm from running into member limits
based on processing-capacity or communication
band width.

This offers advantages and challenges for imple-
menting swarms in commercial (i.e. non-research)
applications. Swarms are – by definition – indepen-
dent from the actual number of agents and from
steady connections to each agent, however, this
requires higher degrees of automation or autonomy
and lessens the control operators can have on both,

the individual agents as well as the swarm as a
whole.

4.1. State of Research

As Dias et al. [1] present over their work, there is a
broad list of projects where swarming behaviour and
swarming applications are being researched. How-
ever, until now, no information about successful com-
mercial applications that fulfill the aforementioned cri-
teria is to be found. Becker [5] also contributes that le-
gal requirements are a challenge to be overcome be-
fore a commercial swarm can be implemented, as au-
thorities demand guaranteed safety before such sys-
tems are deployed in public places.
Nevertheless, Dias et al. and Osaba et al. [1, 3]
provide a lot of current research projects working
on swarming applications. The research projects
deal with all possible aspects of swarms such as
communication among agents, communication with
an operator, different behaviours such as collision
avoidance among swarm members and other as-
pects. These projects show that a lot of progress
is made in this field and swarm robotics are being
prepared for their commercial implementation, as
soon as it is ready and legal.

4.2. Communication

Since swarms operate on a local basis and react to
their neighbours, communication is an important topic
to exchange information with neighbours and identify
each other. In some applications, long range commu-
nication towards their swarm avatar or far agents in
some usecases might be required as well.
Trianni and Dorigo [6] introduce the three different
modes of communication, assumed from the animal
kingdom:
• Stigmergy / indirect communication
• Direct interaction
• Direct communication
Stigmergy, or indirect communication refers to agents
using their environment for communicative pur-
poses. The environment can serve for this carrying
pheromones placed by other agents, as ants do.
The environment can also refer to a construction, as
termites base their behaviour on how far they get
with building a nest: depending on the progress of
the nest construction, their behaviour changes. Tang
et al. [7] show that a possibility to implement stig-
mergy in robotic agents is the usage of pheromones
implemented on RFID tags which are placed in the
environment.
Direct interaction describes communication via phys-
ical contact. Ants show the behaviour to pull other
ants in a certain direction with the intent to make the
other ants follow them. When they want to share infor-
mation about food sources, they give them food sam-
ples from this source to make them aware that this
food source is available. Another possibility for ants to
make a nest-mate follow them is antennation, where
ants tap each other with their antennas. Trianni and
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Dorigo [6] mention that direct interaction is usually not
used for robotic agents as it is usually not intended for
them to have contact. A technical example, however,
could be for trains or Heavy Goods Vehicles (HGVs)
to check if the train cars or the truck trailers are at-
tached to each other by measuring the forces on the
coupling.
Direct communication is the method of communica-
tion best known to humans: Sending signals from
one agent to another. These can be visual clues like
dances or gestures, acoustic signals like talking or –
in most cases for robotic agents – radio frequency
communication.
These different forms of communication are suitable
for different applications and form a library from which
in the development of a swarm different communica-
tion methods can be implemented depending on the
specific needs of the developed swarm.

4.3. Decision-Making

Pinto et al. [8] introduce a cognitive architecture that
combines a decentralized manner in the low levels
of decision making with a centralized level for higher
level decisions, where also human supervisors can
interact with the system. Basic decisions are made on
the individual agents themselves to provide flexibility,
however, if agents make decisions of greater impact,
these decisions are requested; a central decision-
maker then accepts or denies these requests to avoid
conflicting actions. Their usecase is the inspections
of dams and slopes in mining and power generation
to detect deformation damages to the structures.
Shah and Vachhani [9] propose a concept opposite to
the idea of Pinto et al. [8]: They completely leave out
inter agent communication and let the agents solely
act and decide upon their own local perception. The
agents’ goal is to aggregate at a predefined point in
the environment around them. Shah and Vachhani [9]
also explain that their aggregation algorithm reaches
similar performance as other algorithms that use local
or even global communication.

4.4. Task Allocation

Khaluf et al. and Lee et al. [10, 11] all offer local ap-
proaches for agents to decide whether to assume an
open task or not.
Khaluf et al. [10] represent the currently available
tasks as a graph where tasks are nodes and some
tasks are connected via edges. They employ a
local Ant Colony Optimization implementation that
is run on each agent independently to determine on
different factors (deadline, how many agents already
work on it) whether an agent should switch tasks via
an edge or stay. Due to this design, agents can only
switch to tasks that are connected to their current
tasks via an edge.
Lee et al. [11] deal with a threshold based algorithm:
They assume that every agent can work on every
task, but agents have individual priorities for what
tasks to work on. Therefore, the agents use a thresh-

old value they compare to the importance of the task
to evaluate whether they should work on it or not.
Agents decide to work on tasks if the threshold is
exceeded: if agent A “prefers” task T1, but not task
T2, it has a low threshold for T1 and a high threshold
for T2. Even if the importance of T1 is relatively
low, A will still work on it. On the other hand, if the
importance of T2 is relatively low for A, A will not
work on it. However, if no agent works on T2 and its
importance grows, at some point, it exceeds the high
threshold value of A for it and A will still work on it,
even though this task is not among the priorities of
this agent.

4.5. Usecases for Aerial Swarms

Aerial swarms have a wide variety of possible appli-
cations, as Dias et al. [1,3,5] name: a promising field
for these swarms are search and rescue missions,
as multiple vehicles can scan more area to find peo-
ple and animals in need of help. A great number of
Unmanned Aerial Vehicles (UAVs) is able to search
at multiple places at the same time to increase the
chances of finding more living beings like those in
need. In case some living beings are avoiding the
searching agents (i.e. scared animals, escaping sus-
pects searched for by police), it is also harder to flee
from or lose contact to multiple searchers spread out
through the environment. An additional advantage of
unmanned agents in search and rescue missions is
that these missions are often performed in dangerous
areas, like close to natural desasters like forest fires,
volcanoes, etc. By using unmanned vehicles to find
survivors, rescuers are less exposed to danger.
Given their airborne nature, these UAVs do not only
excel at searching missing entities, but also at check-
ing the condition and the processes of those with
known locations. So are aerial swarms promising for
future inspection of traffic, constructions and farms.
Especially constructions that are not easy to reach
and walk along, such as road networks, power lines
or offshore wind parks, could be inspected easier
by UAVs. Therefore, inspection and supervision are
suitable applications for these swarms as well. To
a certain degree, the agents can also intervene, for
example when managing traffic.
UAVs can also map unknown areas. This is, again,
faster when using multiple vehicles to simultaneous
scan multiple places at once. Mapping can be nec-
essary for example in search and rescue missions
to guide rescuers towards victims or victims towards
safety. Therefore, doing this unmanned can help
guiding humans and animals out of risky situations.

5. GOALS OF THIS RESEARCH

A robust and reliable swarming structure is to be de-
veloped that is capable of being deployed close to for-
est fires in order to scout the dimension of the for-
est fire and possibly the fire’s direction of movement
and then search for survivors, both humans and ani-
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mals. After detecting survivors, the follow-up task will
be to lead them away from the fire towards safety.
With humans, this is easier as humans can under-
stand the good intentions behind the drone’s deploy-
ment and can follow the drone to safe areas, as ap-
propriate acoustic and visual messages (e.g., voice
or display “follow me”) are provided. Animals may not
understand that a drone is trying to save them, see
the drones as threats additional to the fire, and try to
avoid them as well. Therefore, if drones trigger a flight
response in animals, the strategy to make them move
away from danger must be adjusted. If perceived as
a threat, the drones have to “push” animals out in-
stead of “pulling” them in. To be flexible and applica-
ble to various situations, the swarming algorithm im-
plemented on the swarm members must be usable for
an arbitrary number of agents being deployed. How-
ever, as a swarm is meant to have its agents working
together, a minimum number of agents might be nec-
essary to accomplish certain tasks. In case of fire or
obstacles, communication between the agents can be
compromised. Therefore, the swarm needs to be op-
erational even if the communication is compromised.
Even though wild fires can be a threat to wild life,
there are other threats that wild life can be exposed
to which can be even more difficult for the animals
to avoid by themself; animals can see and smell fire,
which gives many of them the opportunity to escape
from it by themselves. Only some animals might get
trapped and need some support to find a way out.
Other threats, however, can be more difficult or im-
possible for them to perceive and evade: Certain tox-
ins that could be accidentally or illegally released into
nature could be tasteless and odorless, or radioactive
material could be released after an accident at a nu-
clear power plant. Since the animals cannot perceive
such threats, they will not escape by themselves and
depend on help by humans.
After chasing animals away, it depends on the individ-
ual situation, which other steps might be necessary to
assure the continuation of the animals’ safety.
To accomplish the detection of burning areas and
living beings from sensor data, artificial intelligence
is a necessary element of the implementation. To
cope with unreliable communication, a decentralized
layout of the swarm is a promising solution to both,
not depending on a centralized planning unit as
well as not relying on data of all other agents for
short term tactical decisions (micro management).
This also reduces the computation demand for large
numbers of agents. Long term strategical decisions
(macro management) are still possible and reason-
able on a few, bigger platforms with enhanced power
supply and computational capacity, if the swarm is
set up heterogeneously or if such units are hierar-
chically placed above the swarm. Figure 2 shows
the seamless transition between micro and macro
management. Some border has to be found what
happens on the agents’ local level (decided within the
swarm) and is decided over the swarm (commanded
to the swarm). To guide survivors out of an area,

Global / Macroscopic

Local / Microscopic

High Level Decisions
High level strategic decisions;
defining ultimate goal

Higher Level Decisions
Higher tactical decisions;
defining tasks to accomplish
the mission,
move the swarm as a whole

Medium Level Decisions
Task executions; global path
planning, interactions

Lower Level Decisions
Lower decisions; obastacle
avoidance movement,
grasping, communicating

Low Level Decisions
Low level decisions;
actor controls

FIG 2. Decision levels in the swarm.

the safest route has to be determined, which might
for example be accomplished using potential field
methods or search-based pathfinding. If an animal
has to be chased away from danger, it has to be
determined which routes have to be cut off by agents
that the animal might try to evade the agents and
endanger itself.
Figure 3 shows the possible function dependence
graph, which describes how the different functions
to be implemented work together to achieve a func-
tioning demonstrator. The functions are divided into
the different categories “Input / Output”, “Perception”,
“Communication”, “Behaviour” and the “Demonstra-
tor”.
The functions therefore are seperated into what they
contribute to the system. Especially the behavioural
part is of interest, as here, the swarm-internal deci-
sions are made as well. By deciding which agents
assume which tasks and which tasks are to be done
how, the swarm will achieve its own characteristics.

6. PREPARATION OF A SIMULATION ENVIRON-
MENT

The first step to develop a useful swarming behaviour
is a simple, 2.5 dimensional simulation to test first
algorithms and see how the decentralized decisions
affect the swarm as a whole. For that, such simulation
is under current development. It will feature a simple
representation of a forest with trees aligned on a
grid and predator and prey animals roaming around,
as shown in figure 4. Further, this simulation will
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FIG 3. Function dependence graph.

feature both multi-rotor UAVs as well as fixed wing
ones. The multi-rotor UAVs are the main agents of
the swarm and can move both above and in between
the trees to look for animals and interact with them.
The fixed wing aircraft are mainly for reconnaissance,
but also are able to relay communication between
other agents as well as possibly supplying addi-
tional computation power for high level, macroscopic
decisions. They always remain at altitude above
the forest and do not directly interact with animals.
Additional to trees, bushes, stones and ponds as
obstacles, threats are introduced: fire, poison and
nuclear material. Around them, danger zones are
defined, while safe zones are defined where animals
are to be guided. The animals all flee from fire and
from low flying drones, however, they do not take
notice of poison and radioactive material. The swarm
then has the task to chase all animals into green
zones. The algorithms for each of the tasks depicted
in figure 3 are to be determined by testing different
options, except of perception algorithms which are
not regarded or possible in this simple simulation, as
it is not photo realistic.
If the swarm is able to achieve its goals in the 2.5 di-
mensional environment, a three dimensional environ-
ment will be the next step to produce a more realistic
scenario for the agents. After this, an implementation
on actual drone hardware is due.

7. SUMMARY AND OUTLOOK

In this work in progress paper, we introduce the re-
search project we are working on and define a goal
to be reached in the end of the project. Autonomous
or highly automated swarms of UAVs offer a lot of po-
tential to improve use cases such as search and res-
cue missions, while also bringing challenges like the
need to guarantee safe operation as no human oper-
ator can quickly intervene in critical situations.

FIG 4. A graphical representation of the first simulation
environment for this research. This grid based
world is supposed to be the main element of the
GUI. [12]

Therefore, a robotic swarming concept is to be devel-
oped for search and rescue missions, where humans
and animals are guided away from threats. An em-
phasis is to be put on the rescue of animals as they
are not able to cooperate with drones and are there-
fore more challenging to be guided away from danger
in afforested areas.
In the current step, a 2.5 dimensional simulation soft-
ware is to be developed to test first software concepts
for this swarming application. Within this simulation
environment, both UAVs and animals are imple-
mented. The UAVs are then fitted with algorithms
to control their swarming behaviour, how to move
through their environment and how to interact with
animals. After successfully implementing a swarming
concept in 2.5 dimensions, a three dimensional sim-
ulation will be the next step before implementing a
swarming demonstrator using physical hardware.
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