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Abstract
For the future exploration of our solar system, missions to Small Solar System Bodies (SSSBs), such as asteroids
or comets, are a promising and scientifically important area. For navigation and guidance tasks, high-resolution
and high-accuracy 3D distance maps of the surface are required. Flash-LiDAR sensors are often used to capture
the surface of a SSSB, but they are limited in resolution. This paper proposes an artificial intelligence (AI)
based approach to simultaneously improve the resolution and accuracy of 3D distance maps generated by
flash-LiDAR through AI-based data fusion with 2D camera images. Our method leverages the smaller ground
sampling distance (GSD) of the 2D camera images and the distinct error behavior of 3D surface reconstruction
from LiDAR and camera data. A generative adversarial network (GAN) architecture was designed for that
purpose. We evaluated our approach extensively with a custom generated synthetically dataset of an asteroid
surface. As a result of the tests, a simultaneous improvement of the ground resolution by a factor of 4× 4 and
suppression of the RMSE distance error by a factor of 1.31 with respect to the simulated flash-LiDAR data was
successfully demonstrated.
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NOMENCLATURE

Abbreviations

AI Artificial Intelligence

CNN Convolutional Neural Network

DEM Digital Elevation Map

DN Discrimantor Network

GAN Generative Adversarial Network

GN Generator Network

GSD Ground Sampling Distance

LiDAR Light imaging, detection and ranging

MSE Mean Squared Error

NN Neural Network

PNSR Peak Signal to Noise Ratio

RMSE Root Mean Squared Error

SfS Shape from Shading

SSSB Small Solar System Body

1. INTRODUCTION

Missions to SSSBs, such as asteroids or comets, are
a promising and scientifically important area for fu-
ture solar system exploration. Exploring asteroids or
comets can provide valuable insights into the gene-
sis and progression of our solar system while also en-
abling us to identify lucrative resources for upcom-
ing space missions. However, these exploration mis-
sions pose numerous challenges. Besides the small,
varying gravity or the unstructured, irregular surface
and landform, the long distances to Earth, particu-
larly the impossible real-time communication between
ground control and the exploring spacecraft, is one ma-
jor problem. Current missions to the close vicinity of
SSSBs require plenty of human monitoring and pro-
cessing to ensure a safe flight. Thus, the exploration
of SSSBs is intrinsically tied to the achievement of au-
tonomy within mission operations.
Recent space missions have been incorporating in-
creasingly advanced technologies to overcome the
limitations of human involvement. Hayabusa-2
[1], launched in 2014, utilized upgraded navigation
tools and advanced characterization techniques such
as radiometric tracking and autonomous descent.
OSIRIS-REx [2], launched in 2016, took it a step
further by incorporating vision-based navigation for
close-range operations, advanced exposure techniques,
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FIG 1. Concept of Astrone and Astrone KI’s navigation
system

and landmark tracking in addition to radiometric
tracking. Most recently, DART [3] launched success-
fully in 2021 and achieved kinetic impact deflection
using a fully autonomous navigation system and
avionics.
As part of the Astrone [4, 5] project, a flash-
LiDAR-augmented inertial navigation system has
been developed. This system enables advanced
surface mobility for science and exploration op-
erations on the surfaces of SSSBs like the comet
67P/Churyumov–Gerasimenko. The system uses 3D
distance maps generated by flash-LiDAR to update
the navigation filter and generate 3D maps of the
SSSB’s surface. Fig. 1 depicts the conceptual pro-
cedure. In the follow-up project, Astrone KI, an
AI-based approach to increase the resolution of a 3D
distance map by data fusion with a single monocular
2D greyscale image, both taken from wide-angle
optics, was proposed and successfully tested in a
simulation environment [6]. The higher-resolution 3D
distance map enables implementing other AI-based
systems for Astrone KI’s navigation concept [7, 8].
A high-resolution monocular grayscale camera with
a resolution of 1024 × 1024 pixels and a flash-LiDAR
provides a resolution of 256× 256 provide the needed
data.
To further improve the navigation system’s perfor-
mance, we present an approach to simultaneously
improving the resolution and accuracy of 3D distance
maps through AI-based data fusion with 2D camera
images. We investigate the algorithms’ behavior in
relation to noisy flash-LiDAR data. The goal was
to develop an algorithm without relying on multiple
neural networks for different subtasks of the data
fusion.
To this end, our main contributions are:

1) Improve the resolution and accuracy of 3D distance
maps through AI-based data fusion with 2D camera
images.

2) The neural network training and test campaign re-
sults in the simulated asteroid environment.

2. RELATED WORK

Flash-LiDAR utilizes a time-of-flight method to
measure distances, resulting in minimal distance-
dependent errors. For each pixel, the absolute
distance is determined individually. As a result, it has
the advantage of no pixel-to-pixel dependency and
error accumulation across the frame. On the other
hand, a flash-LiDAR is limited in resolution, and
measurements have a relatively large distance error.
Especially for small distances, in the context of space
exploration, a few meters can cause distance errors to
exceed the GSD.
Analytical methods like Shape-from-Shading (SfS)
[9] can provide high-resolution data and a low local
error to compensate for some of flash-LiDAR’s disad-
vantages. SfS extracts local gradients from 2D image
data and then integrates the gradients to reconstruct
the 3D surface. This results in a high-resolution 3D
image with small local distance errors. While Gaskell
et al. (2008) [10] and Al Asad et al. (2021) [11] have
used a SfS approach in the context of an asteroid
surface, there are limitations such as scale ambiguity,
distance error accumulation across the field of view,
and the need to capture multiple images of the same
scene under different illumination conditions, making
it challenging to apply to the context of an asteroid
surface.

In recent years, different machine learning approaches,
such as artificial neural networks (NN), achieved
game-changing results in computer vision tasks such
as classification, segmentation, super-resolution, and
3D reconstruction. Especially for 3D reconstruction,
monocular depth estimation, depth super-resolution,
or depth completion have become active research
fields with many, but mainly for terrestrial applica-
tions. The approaches used in these fields, which
rely on deep neural networks, can be categorized by
their fusion strategies. These methods are early, late,
and hybrid. Each fusion method has its advantages
and disadvantages. Early fusion easily identifies
the relationships between features but often leads to
overfitting. On the other hand, late fusion can address
overfitting issues, but it does not allow the classifier
to train on all the data simultaneously. Hybrid fusion,
however, offers more flexibility than the previous two
methods. Nevertheless, it requires selecting suitable
fusion approaches based on the specific architecture,
problems, and research topic. [12, 13]
Usually, an encoder-decoder network is utilized to first
encode different input signals into a common latent
space, enabling feature fusion. Then, a decoder recon-
structs an output depth map [14, 15]. With AI-based
methods, noisy input data remains a challenge. To ad-
dress this issue, FusionNet [16] fuses local and global
information with a confidence map. Instead, PENet
[17] fuses the output of a color-dominant branch and
a depth-dominant branch, using a confidence map uti-
lizing the benefits of a late fusion approach. Also, a
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CycleGAN [18] approach was applied to synthetic and
noisy LiDAR data for a sparse-to-dense completion.
Most modern approaches are used in terrestrial ap-
plications. Many Datasets like KITTI [19, 20], SYN-
THIA [21], or NYUv2 [22] are available in this context
for training and testing. On the other hand, the sur-
face of celestial bodies or small solar system bodies
can vary significantly. Different illumination condi-
tions and an unstructured surface differ greatly from
typical applications. Usable, realistic datasets are of-
ten closed-source or do not exist. One exception is the
Artificial Lunar Landscape [23], which lacks necessary
LiDAR data. Despite that, AI-based methods were
applied to environments comparable to the surface of
an SSSB: The Mars3Dnet13 [24] used a Convolutional
Neural Network (CNN)-based structure to predict a
high-resolution Digital Elevation Model (DEM) from
one monocular grayscale 2D image and subsequently
fused this with a low-resolution DEM. Synthetic and
real data, including context camera images of the Mar-
tian surface, were used for training. Another CNN-
based approach was given by Chen et al. (2022) [25],
where a high-resolution image and a low-resolution
DEM of the lunar surface were used to predict a high-
resolution DEM. Then, SfS was applied to improve
details. Also, GAN-based approaches have demon-
strated effectiveness under these conditions in recent
works [26, 27, 28].
Liesch et al. (2023) [6] presented a solution to com-
bine the advantages of flash-LiDAR and SfS in the
context of asteroid exploration missions. This GAN-
based solution provides high-resolution data and gen-
erally suppresses scale ambiguity and distance error
accumulation for small local residuals, but the LiDAR
distance error was not corrected.

3. CONCEPT

3.1. Overview

Fig. 2 illustrates the processing pipeline. Our ap-
proach employs a low-resolution depth image with nor-
mally distributed noise and a high-resolution grayscale
camera image as guidance. Both input sources are as-
sumed to be perfectly calibrated. The general idea is
to extract high-frequency components from the cam-
era image and low frequencies from the depth image.
The performance of neural networks is highly depen-
dent on the quality and characteristics of the train-
ing data. To enhance robustness against noisy inputs
and to promote the generation of higher-resolution and
more accurate outputs, the neural network was trained
using data intentionally augmented with noise.

3.2. Principle of the distance noise suppression

Distance noise reduction due to data fusion is possible
due to the different behavior of LiDAR and SfS errors.
With flash-LiDAR, the absolute local distance is
determined independently for each pixel of the array.
The error occurs in the time domain (time-of-flight

FIG 2. Concept and camera-LiDAR set-up

measurement) and has a low dependence on the
target distance within the operating range. As a
result, for moderate distances and large flash-LiDAR
arrays (Astrone KI’s application case), the σ1 distance
error of the distribution can be larger than the GSD.
For SfS, the relative local distance is determined by
integrating local slopes (gradients). In this case, the
distance difference between adjacent pixels can be
determined with an error generally well below the
GSD, but the error rapidly grows with increasing
sampling interval. Fig. 3 shows an example of the
distance error suppression for the simplified error
model (zero mean Gaussian noise) and distance values
typical for Astrone KI’s application scenario.

Fig. 3a shows an example of LiDAR data: absolute
distances with correct scaling for each pixel of the
flash-LiDAR. At the same time, the distance error is
relatively high (σ1 = 0.05m, which even exceeds the
GSD (0.04m)). The error can be greatly reduced by
averaging 5 × 5 pixels at the cost of losing small de-
tails (Fig. 3b). The SfS data (Fig. 3c) are relative (no
absolute values) and scaled only with respect to the
GSD. In this case, the errors are much smaller (σ well
below the GSD), especially for the pixels close to the
center of the processed area. Finally, Fig. 3d shows
the result of the fusion of the averaged LiDAR data
(Fig. 3b) and the SfS data (Fig. 3c): with respect to
the LiDAR data (Fig. 3a), absolute distance values,
correct scaling and small details are preserved, while
the errors are significantly reduced.
Since the real error behavior differs from the ideal-
ized Gaussian distribution, an AI-based solution was
applied to deal with the complicated error models.

3.3. Design of the Neural Network

Our neural network builds on an advanced GAN
framework proposed by Liesch et al. (2023) [6],
designed to enhance the resolution of the 3D dis-
tance map and reconstruct high-frequency surface
components. The GAN architecture comprises a
generator network (GN) and a discriminator network
(DN), which are trained in a competitive manner.
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(a) (b)

(c) (d)

FIG 3. Error reduction as a result of the flash-LiDAR / SfS data fusion. x represents the samples in the image plane.

Accordingly, the GAN loss is used, defined by the
functions D and G, representing the DN and GN,
respectively:

LGAN (G,D) = Ey[loge D(y)]

+ EILR,IHR
[loge(1−D(G(ILR, IHR))]

(1)

Additionally, Isola et al. (2018) [29] suggested using
the L1 distance, which encourages less blurring than
the L2 distance. L1 will force low-frequency correct-
ness. Although this will fail to capture details and
high frequencies, the discriminator network will take
care of this:

LL1(G) = Ey,ILR,IHR
[y −G(ILR, IHR)] (2)

The combined loss function L incorporates both LGAN

and LL1, with the hyperparameter λ controlling the
influence of LL1. In our implementation, we set λ =
100

G∗ = argmin
G

max
D

LGAN (G,D) + λLL1(G) (3)

3.4. Data Pre- and Postprocessing Procedures

Due to GPU memory constraints, the input camera
image and low-resolution 3D distance map are divided
into smaller patches and processed individually by the

GN. The GAN architecture requires that the input
data be rescaled between 0 and 1. This requirement
is derived from Eq. 1, where the binary cross entropy
loss function is used to calculate LGAN . A min/max
normalization brings the data to the required form.
The mean and standard derivation are calculated per
input distance image patch to recover the original scal-
ing with absolute values later in the postprocessing
after the processing by the GN. The final preprocess-
ing step resizes the low-resolution input patches to the
same size as the camera image patches. Missing val-
ues are set to 0. That step allows concatenating both
inputs to 128 × 128 × 2 per tile. Now all resulting 64
tiles, for an input resolution of 1024 × 1024, have the
correct form to be passed to the GN in parallel.
Accordingly, the output of the GN contains 64 patches
with a size of 128× 128. The means and standard de-
viations obtained during the preprocessing are used to
recover the original scale and absolute values. As the
final step of postprocessing, all patches are combined
to create a complete high-resolution and accurate 3D
distance map with absolute values.

4. EXPERIMENTS

4.1. Dataset generation

To address the scarcity of publicly available datasets
and adhere to the specifications of the Astrone
KI project, we developed a custom dataset us-
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ing the project’s data generation tool. A virtual
spacecraft, designed with specifications closely re-
sembling those of the anticipated real spacecraft,
was employed in the simulation. This virtual space-
craft navigated the simulated surface of comet
67P/Churyumov–Gerasimenko along various trajec-
tories, mimicking the jump-like movements expected
of the real spacecraft. During these simulated tra-
jectories, high-resolution images (1024 × 1024 pixels)
and corresponding depth images were captured using
a virtual camera and flash-LiDAR sensor for a large
Field of View of 65°×65°. Both sensors were perfectly
calibrated and aligned according to project require-
ments. The nadir angle has been changed between
0° and 50° to cover a wider range of scenarios during
a mission. Following the initial data generation, the
high-resolution depth images were downsampled to
obtain low-resolution depth images, in line with the
project’s investigation needs. Additionally, normally
distributed noise was added to the low-resolution
depth images to further simulate inaccurate LiDAR
measurement and more realistic conditions in this pre-
liminary analysis. In total, about 10, 000 individual
samples have been created.

4.2. Training specifications and evaluation metrics

We trained the GAN using our specifically created
dataset. We employed low-resolution depth images
with noise and camera image pairs. For the training
process, 7000 samples were used. The training was
conducted using Adams optimizers with β1 = 0.9 and
β2 = 0.999 and a learning rate of 10−7 for the gen-
erator and discriminator network on a single NVIDIA
RTX 3090 GPU and an AMD Ryzen 5950x CPU. Both
networks were efficiently trained using the AI frame-
work Tensorflow [30] for 30 epochs.
After the training, the generator network’s perfor-
mance was evaluated quantitatively using the Peak
Signal-to-Noise Ratio (PSNR), Mean average error
(MAE), Root Mean Squared Error (RMSE), Mean
Squared Error (MAE), and qualitatively using visual
comparisons. The metrics can be computed between
the output y and ground truth depth image ŷ accord-
ing to Eq. 4a-4d using the total number of points per
image n.

MAE =
1

n
·

n∑
k=1

|ŷk − yk| (4a)

MSE =
1

n
·

n∑
k=1

|ŷ − y|2 (4b)

RMSE =

√√√√ 1

n
·

n∑
k=1

|ŷ − y|2 (4c)

PSNR = 20 · log10
(

ymax√
MSE

)
(4d)

A higher PSNR represents a more accurate reconstruc-
tion of the ground-truth image, where ymax is the max-
imum possible value of the depth image y in Eq. 4d.
Lower values are better for 4a-4c.

4.3. Results

In this section, we detail the experiments and results
based on the network’s architecture and overall con-
cept, as discussed in Section 3. The quantitative per-
formance, using the metrics explained in Section 4.2,
is shown in Tab. 1 and 2. We utilized 2000 individual
data samples from our custom-generated dataset that
were not part of the training process for validation
and testing purposes. The performance of our system
was compared using a network trained with a standard
approach (GN-standard) and a network trained specif-
ically with noise (GN-noise). The system with the
GN, specifically trained for noisy data, outperformed
the system with the standard network. All metrics
show a significant improvement compared to the stan-
dard approach. To verify the actual improvement in
accuracy, we only compared the existing data points
of the depth image before and after the processing.
In other words, the low-resolution depth image was
compared with the corresponding points of the high-
resolution output. Tab 2 shows that the GN, created
without special training, could only increase the accu-
racy to a small amount. In the case of the MAE, the
GN-standard creates an even worse result. However,
GN-noise improved all metrics compared to the origi-
nal input data and, therefore, improved the accuracy
of the original measurements. The qualitative results

TAB 1. Quantitative comparison of different GNs in terms
of the metrics defined in Eq. 4a-4d on our syn-
thetically generated dataset. MAE, RMSE in cm,
MSE in cm2, and PSNR in db.

Version MAE MSE RMSE PSNR

GN-standard 4.06 40.91 6.39 25.67

GN-noise 2.09 26.00 5.09 31.18

are visually compared to ground truth for two scenes.
Fig. 4 visually represents the input camera image,
low-resolution LiDAR data, the output (GN-noise NN
was used), and ground truth. Additionally, absolute
errors are shown for the system’s output and a simple
bilinear upsampling of the low-resolution data. These
results demonstrate the robustness of our algorithms
against the noise. Recovering some high-resolution de-
tails from the input camera image and low-resolution
depth image with σ1 = 5 cm noise was possible. From
the visualized absolute error, it is visible that the high-
est errors are around the edges of objects like stones.
In comparison, the error on the surface is relatively
small. However, large errors or effects of the noise
applied to the low-resolution input data on the final
output are not visible.
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FIG 4. Qualtitative comparison of our system’s output using the GN-noise NN to ground truth and bilinear upsampled
low-resolution LiDAR data.

TAB 2. Quantitative comparison of already existing Li-
DAR points before the processing and after the
processing in terms of the metrics defined in
Eq. 4a-4d on our synthetically generated dataset.
MAE, RMSE in cm, MSE in cm2, and PSNR in
db.

Version MAE MSE RMSE PSNR

Before 3.99 25.00 5.00 26.02

GN-standard 4.36 34.26 5.85 25.26

GN-noise 2.07 14.64 3.82 31.58

5. CONCLUSION

An AI-based approach is proposed to simultaneously
improve the resolution and accuracy of 3D distance
maps generated by flash-LiDAR through AI-based
data fusion with 2D camera images. The approach
exploits the camera images’ smaller ground sampling
distance and the different error behavior of 3D surface
reconstruction from LiDAR and camera data. A
neural network was designed based on the advanced
GAN framework. The network was trained with 7000
data samples (simulated camera and flash-LiDAR
frames and ground truth data) from a custom dataset
generated by a high-fidelity simulator of the asteroid
surface. The trained network was tested with 2000

additional data samples (not used for training). As
a result of the test, a simultaneous improvement
of the ground resolution by a factor of 4 × 4 and
suppression of the RMSE distance error by a factor of
1.31 with respect to the simulated flash-LiDAR data
was successfully demonstrated.
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