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Abstract
The capabilities of a-posteriori discretisation error estimation methods is investigated with an emphasis on local
flow variables in aerodynamic flows. Sets of meshes are generated for three different test cases that represent
typical aerodynamic flow features. Simulations are carried out using the TAU-Code solver developed by the
German Aerospace Center (DLR).
Performance of the estimation methods to locate the error correctly is first judged by visual inspection. In
addition, a quantitative error measurement is introduced to validate the accuracy of the magnitude estimation.
Ultimately, the study aims to lay a foundation for error estimation in complex geometries and provides a basis
for grid requirements and local grid refinement.
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NOMENCLATURE

Symbols

α Angle of attack deg

CD Drag coefficient -

CL Lift coefficient -

CMY Pitching moment coefficient -

CMZ Yawing moment coefficient -

CP Pressure coefficient -

E Absolute error -

ϵ Relative error -

h Grid size indicator -

M Mach number -

N Number of grid points -

p Pressure Pa

ϕ Arbitrary solution variable -

r Grid refinement ratio -

u Stream-wise velocity m/s

Indices

e Estimate

∞ Free-stream condition

t True

Abbreviations

EE Error estimation

GCI Grid convergence index

RE Richardson extrapolation

1. INTRODUCTION

Recent advances in computational capabilities have
transformed computational fluid dynamics (CFD) into
an indispensable tool across a variety of different in-
dustries. Especially in aerospace, high operational
costs of wind tunnels and flight tests drive the endeav-
our towards virtual certification through simulation.
However, CFD results are still subject to multiple er-
ror sources. In an effort to quantify errors in compu-
tational sciences, the subject dealing with verification
and validation has emerged [1, 2]. In addition, error
estimation has been deemed one of the key challenges
in NASA’s CFD Vision 2023 road map [3].
The current study investigates the ability of different
estimation methods to accurately predict the location
and magnitude of the discretisation error in local flow
variables. For this purpose a set of grids is created for
three different test cases featuring typical aerodynamic
flows: separated, transsonic and vortical flows. The
performance comparison of error estimations is carried
out for the original grid convergence index (GCI) [4], a
novel local variation, and the approximate error scal-
ing method [5].
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2. NUMERICAL ERROR ESTIMATION

Today it is well established that the numerical error
can be further subdivided into round-off, iterative and
discretisation errors [1]. Round-off errors are universal
to all computational tasks and are caused by the finite
precision of computers, they are unavoidable. Fortu-
nately, their magnitude is small compared to the other
error sources and their influence on the solution can
be neglected. Iterative errors describe the difference
between a theoretically completely converged solution
on a mesh and the presented solution at the current
iteration. For engineering applications, a converged
solution can typically be obtained by careful mon-
itoring of residuals or specific engineering metrics,
e.g. force or momentum coefficients. The largest
proportion of numerical error is caused by numerically
solving the governing equations in the discretised
computational domain. Most studies across literature
focus on the last error type when they talk about the
estimation of numerical error [6–8].

The common goal for all discretisation error estima-
tion (EE) methods is to predict the difference between
a solution variable ϕ computed on an existing grid and
the exact solution to the formulated problem. The ex-
act solution can be replaced with a numerical solution
on a grid with an infinitesimally small grid size param-
eter h. The true error Et(ϕ, h) can be computed by
assuming the following relationship:

(1) Et(ϕ, h) ∝ a · Ea(ϕ, h),

where Ea(ϕ, h) is the approximated error and a a
proportionality constant. As mentioned above, the
true error is defined as Et(ϕ, h) = ϕ(h = 0) − ϕ(h).
The estimated error can be computed from Ee(ϕ, h) =
ϕ(h) − ϕ(r · h) but requires at least two solutions
on grids with different cell sizes. The variation in
cell size is expressed through the refinement ratio
r = h2/h1 which is defined as the ratio of the grid size
parameter. In the present study, the subscript 1 refers
to the finest grid and subsequent subscripts describe
coarser grids. The solution variable ϕ can refer to a
local flow quantity defined per cell as well as integral
values.

First efforts to estimate a solution on a grid with a
theoretical grid size of zero were made by Richardson
and Gaunt [9]. Richardson Extrapolation (RE) uses
the following equation to solve for the solution on a
grid with infinitesimal small spacing ϕ(h = 0)

(2) ϕ(h) = ϕ(h = 0) + C · hp + t.h.o.

The three unknowns in Eq.2 require solutions from
three differently fine grids to determine the solution of
the equation system. Rearranging the equation leads
to the formulation of the GCI [4] that is widely used
to report the discretisation error in CFD studies

GCI1 =
Fs|ϵ|
1− rp

GCI2 = GCI1r
p(3)

with the safety factor Fs and the relative error ϵ. The
GCI1 describes the error on the fine grid and the sub-
script 2 refers to the error on the coarse grid. To reduce
the number of grids necessary to obtain an error esti-
mate, one can assume that the order of convergence p
matches the formal order of the numerical scheme em-
ployed to obtain the solution. Then only two grids are
needed to compute the GCI. Additionally, it should be
noted that the determination of p can be a challenge
by itself [10]. Therefore, the results presented in the
current study were computed assuming the formal or-
der of convergence. For the computation of the GCI
with two grids, the factor of safety Fs is set to three
to obtain a conservative error estimate.
Across literature, the GCI is often applied to integral
values, e.g. force coefficients. These global variables
are of great interest for engineering application. Yet,
additional information of the local error can help to
setup suitable meshes for efficient simulations.
The cell-wise application of the GCI leads to issues
with the relative error ϵ. Near a wall or in region of
flow re-circulation, the relative error may lead to spu-
rious results due to division by small values. However,
these areas are often of particular interest for aerody-
namic flows. To avoid this issue, the present study
uses the absolute error to compute the GCI. Strict re-
quirements for the grid generation process hinder the
GCI to be applied to complex geometries if all the-
oretical prerequisites should be met. To circumvent
some of these prerequisites, a local GCI variant is in-
troduced. The idea behind this method is to obtain
a local grid refinement ratio by defining a "radius of
interest" around each cell. A refinement ratio can be
calculated when treating the area(2D)/ volume(3D)
inside the radius as an independent grid. By setting
the correct size for the radius, each small section sat-
isfies the condition of uniform grid refinement. One
drawback of this method is that the determination
of the cells that lay within the interest area can be-
come computationally expensive for very larger un-
structured grids.

An alternative methodology to find the proportional-
ity constant a between the true and estimated error,
the approximate error scaling (AES) method was pro-
posed in [5]. In contrast to the well established RE, the
procedure completely avoids the use of a grid sizing pa-
rameter or refinement ratio and does not require any
knowledge about the order of convergence. The ab-
sence of any measure for the cell size makes the AES
method a promising alternative for error estimation on
unstructured-hybrid grids.
On the downside, the method requires a set of at least
three grids to compute a defined as

(4) a =
||a1i ||1 + ||a2i ||1

2N
,
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where a1i and a2i are local variables computed at every
grid point i. The global constant a is defined as the
average of the local variables across the total number
of cells N .

(5) a1i =
ϕi
2 − ϕi

1

ϕi
3 − 2ϕi

2 + ϕi
1

and

(6) a2i =
ϕi
3 − ϕi

2

ϕi
3 − 2ϕi

2 + ϕi
1

.

In order to judge the performance of the different error
estimation methods, qualitative inspection of the re-
sults is not sufficient. It can provide useful insight into
the error location, but lacks the capability to draw ac-
curate conclusions about the magnitude of the error.
To do so, the current study combines the location and
magnitude of the estimated error into a single metric
using the ℓ1-norm. It is defined as

(7) ||x||1 =
N∑
i=0

|xi|,

where xi represents an error variable at each grid point
and N the total number of cells.

2.1. Challenges

Even though today discretisation error estimation is
widely used, its application is still associated with a
number of challenges.

2.1.1. Reference solution

Key to evaluate the performance of error estimation
methods is the existence of a suitable reference so-
lution. Typically, proposed error estimation schemes
are tested against generic scalar transport equations or
simple flows which have an analytical solution [5], [11].
Engineering problems often feature complex flows that
can only be solved numerically. To circumvent this
problem, a very fine mesh was generated in addition
to the set of meshes for the error estimation. This re-
ally fine mesh acts as a numerical reference solution to
evaluate the performance of the estimation scheme. It
is acknowledged that the reference solution is not free
of discretisation errors itself. However, using a numer-
ical reference with the same modeling approach pro-
vides the benefit that modelling errors do not need to
be considered explicitly unlike when using a reference
form an experiment or a high-fidelity computation.

2.1.2. Grid related concerns

As previously mentioned, test cases often feature very
basic geometries and flows to reduce complexity. To
add to the simplicity, they are often two-dimensional.
This allows to discretise the geometry using structured
grids with quadrilateral cells that enable easy refine-
ment to create a series of grids needed to conduct an
error estimation study. The transition to complex ge-

ometries that feature unstructured hybrid grids brings
along some challenges:

• Generating a set of grids that satisfies requirements
for EE-schemes

• Treatment of the near-wall and far-field regions
• Determining a characteristic cell size

2.1.3. Data Interpolation

In order to analyse the results of the different meshes,
solution variables have to be interpolated onto a com-
mon grid. For the two-dimensional test cases as well
as the surface values, the data from all solutions is
linearly interpolated onto the coarse grid. For the
analysis of the flow field of the three-dimensional grid,
planes are extracted using structured rectangular grids
in areas of interest. It is assumed that the error in-
troduced by interpolation is sufficiently small and can
therefore be neglected.

3. GRID GENERATION

Creating a good quality group of meshes is essential
to carry out error estimations. The following section
briefly discusses how the meshes for all test cases were
created and explains the choices made during grid gen-
eration.
For aerodynamic flows it is especially important to
accurately capture the flow in the near wall region.
For wall-resolved simulations, a common practice is to
choose the height of the first cell to match y+ = 1.
This principle was also applied in the present study.
Additionally, inflation layers are used to discretise the
near-wall regions in a computationally efficient way.
For each test case the coarsest grid serves as a starting
point for the grid generation and satisfies the y+ = 1
condition. The procedure to create subsequent meshes
is as follows:
• The height of the first prism cell is kept constant at
y+ = 1 for all meshes. Additional refinement would
lead to increased computational cost without any
accuracy gain.

• A global cell size is specified and the number of prism
layers is adjusted to obtain a smooth transition be-
tween prismatic and hexahedral cells.

• Cell size is scaled by a factor of 1/2
n
2 , where n is the

number of grid dimensions.
While this procedure does not result in a set of com-
pletely scaled meshes, it is typical for engineering prob-
lems.

4. FLOW SOLVER AND TEST CASE SETUP

Simulations are performed using the DLR TAU-Code
release.2021.1.0 flow solver developed by the German
Aerospace Center [12]. TAU is a second order finite
volume flow solver that is optimised for the use on
unstructured hybrid grids. For all test cases in the
present study, the Spalart-Allmaras turbulence model
[13] with negative correction is employed to close the
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RANS equations. The model is widely used in aerody-
namic applications and solves the following transport
equation

∂ν̃

∂t
+ u⃗ · ∇⃗ν̃ = cb1(1− ft2)Ŝν̃−[

cw1fw − cb1
κ2

ft2

]
(
ν̃

d
)2 +

1

σ

[
∇⃗(ν + ν̃)∇⃗ν̃ + cb2∇⃗ν̃

]
.

(8)

For negative values of ν̃, the formulation proposed by
[14] is solved instead.
Three different test cases have been carefully selected
to reproduce flow phenomena present in typical ex-
ternal flows. Namely, these are separated, transonic
and vortical flows. The first two test cases are two-
dimensional simple cases used to evaluate the applica-
bility and performance of the aforementioned methods.
The last test case serves as a trial for error estimation
in complex three-dimensional flows.

4.1. Case 1: Separated flow over a hump

The NASA wall mounted hump geometry is part of a
series of thoroughly investigated test cases provided by
NASA that are used to validate turbulence models. A
detailed overview of the setup is provided in [15]. The
computations are run at a free-stream Mach number
Mref = 0.1 with a Reynolds number of 936000. Sim-
ulations are performed on four different unstructured
meshes ranging from N = 10142 to N = 77270 cells. A
structured grid with 1632 cells in stream-wise and 432
in the wall-normal direction taking from the NASA
turbulence modelling data base acts as a basis for the
reference solution. The grid is available at [16].

4.2. Case 2: NACA0012 airfoil

The NACA0012 airfoil is part of the NACA four-digit
series and resembles a symmetric airfoil with a maxi-
mum thickness equal to 12% of it chord length. The
setup consists of a c-shaped computational domain
with a far-field boundary conditions applied to the
edges. The free-stream mach number M∞ equals 0.75.
Simulations are performed at a Reynolds-number of
Re = 107. A previous study by [17] revealed the ex-
istence of shock buffet for angles of attack exceeding
3.8◦. Since discontinuities itself are already challeng-
ing, steady simulations are performed at α = 3.5◦ to
avoid buffet and obtain a stationary shock. Five differ-
ent grids are generated by modifying the aspect ratio
of the first prism cell while keeping the height constant
at y+ = 1. The result is a set of grids that range from
63k to 484k cells. The reference solution is obtained
on a grid that has a highly refined region above the
airfoil to accurately capture the shock and consists of
approximately 3M cells.

4.3. Case 3: Flow around VFE-2

The final test case introduces three-dimensional vor-
tical flow to the challenge of error estimation. The

vortex flow experiment (VFE-2) geometry features a
65◦ swept delta wing. The geometry has been exten-
sively investigated in previous studies [18]. To keep
complexity at a minimum, simulations are carried out
at subsonic conditions with a free-stream Mach num-
ber M∞ = 0.4, Reynolds number Re = 3 · 106 and an
angle of attack α = 13.3◦ to ensure vortex formation
but avoid vortex breakdown. To allow for a simple grid
generation, the geometry features a leading edge with
a medium sized radius equal to that found in [18]. In
addition, the sharp trailing edge is also modelled with
a slight radius. Due to the symmetric nature of the ge-
ometry, the computational domain only features a half
wing. This way the computational cost can be signif-
icantly reduced. A set of three meshes with 4.4M ,
9.6M and 21.3M nodes is created in addition to a ref-
erence mesh that consists of 110M nodes. All meshes
feature a refined region around the wing and a rela-
tively coarse mesh in the far-field.

5. RESULTS

The next section will present the findings of the study
and will provide insight into the performance of the
different estimation schemes when applied to a set of
flow conditions.

5.1. Wall-mounted hump

The flow field over the wall mounted hump acts as a
first benchmark case to test the applicability and per-
formance of the previously discussed methods. Figure
1 compares the error norm of the stream-wise veloc-
ity u and pressure p across the whole computational
domain according to equation 7. The four bars rep-
resent the "true" reference error and the three error
estimates based on the GCI, its local variant and the
AES. The norm is a measure for the accumulated error
across the whole computational domain. This means
that the magnitude of the estimation should match
the reference error. It becomes clear that the local
GCI variant performs worst across the whole range of
grids by a significant margin, especially for the pres-
sure error.

FIG 1. Error norm for the stream-wise velocity (left) on
the left and pressure (right).

However, Figure 1 does not tell the full story. In the-
ory, the error estimation is able to predict the accu-
rate error magnitude across the domain, but could do

4

Deutscher Luft- und Raumfahrtkongress 2024

CC BY-SA 4.0

https://creativecommons.org/licenses/by-sa/4.0/


so by locating the error at the wrong position in the
grid. This concern can be addressed by forming the
difference between the reference and estimated error
before plotting the norm. The results are presented
in Figure 2. An accurate prediction of the error is
indicated by a low overall error norm. An ideal over-
lap between the reference and estimated error would
results in ||∆E(ϕ)||1 = 0. Again, the local variant
of the grid convergence index is vastly underperform-
ing compared to the other two methods. Between the
other two, the AES scheme has a slight edge over the
GCI for the fine meshes. For the pressure error its
performance falls of quickly on the coarser meshes.

FIG 2. Error norm for difference in error between reference
and estimation. Stream-wise velocity on the left
and pressure on the right.

Concluding, the performance of the local GCI variant
is deemed to poor. In addition, this method becomes
increasingly computationally expensive for larger un-
structured grids. Therefore, it is decided to not inves-
tigate the method further for the other test cases.

FIG 3. Error norm for difference in error between refer-
ence and estimation divided into over- and under
prediction. The left bar shows the GCI and the
right bar the AES method. Stream-wise velocity
on the left and pressure on the right.

A last important distinction is presented for the dif-
ference in magnitude between "true" and estimated
error. For practical applications, overpredicting the
error is better than underprediction. Figure 3 displays
the share of error that is over- and under predicted by
the GCI and AES error estimation method. Both pre-
dict the magnitude of the error smaller than it really
is across all grids and investigated flow variables.

5.2. NACA 0012

The two-dimensional NACA0012 airfoil confronts the
error estimation methods with a particular challeng-
ing flow phenomenon: a discontinuity introduced by a
shock above the airfoil. It is expected that the position
of the shock moves based on the grid resolution. This
has a significant influence on the pitching moment co-
efficient. Figure 4 presents the evolution of the lift
and pitching moment coefficient on the left and right
side respectively. Both variables show asymptotic be-
haviour and approach their limit value with increasing
grid resolution.

FIG 4. Lift and pitching moment coefficient of NACA0012
airfoil plotted against grid resolution.

Before the performance of the error estimation
schemes is discussed, the flow field and reference error
are presented in Figure 5. The top contour shows the
Mach number distribution above the wing. A close up
of the shock origin on the airfoil surface at x/c ≈ 0.41
in Figure 5 [c] shows the lambda structure of the
shock system, revealed in more detail by computing
the error. As expected, the error is almost exclusively
located at the alleged shock location and pictures
a perfect representation of the discontinuity. Up-
and downstream of the shock, the Mach number is
relatively uniform and accurately predicted even by
the coarse grids.
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FIG 5. Contour plots of Mach number [a], reference error
on medium grid [b] and close-up of lambda struc-
ture visualized through the error [c].

FIG 6. Contour of estimated error using [a] the GCI and
[b] the AES method.

Figure 6 shows the estimated error. The top contour
displays the grid convergence index, the AES method
is presented in the bottom. By visual inspection
both methods predict the error at the correct lo-
cation. However, both estimations fail to capture
the curvature of the shock above z/c = 0.25. The
GCI underestimates the magnitude slightly, especially
right above the wing. Contrary, the AES method
provides a very conservative estimate and significantly
overpredicts the error magnitude.

Ultimately, the capability to deal with discontinuities
can only be judged by looking at a quantitative eval-
uation of the results. In alignment with the results
from the flow field analysis, the AES method seems to
vastly overestimate the error for Mach number across
the whole range of grids as displayed in figure 7. In
particular for the fine grid the method estimate a very
high error magnitude in comparison to the reference.
The right-hand side of Figure 7 displays the estima-
tion discrepancy for νt. For the turbulent viscosity,
the error estimate from the two methods shows equal
performance across the whole range of grids..

FIG 7. Difference in reference and estimated error norm
for three different grids. Part [a] displays the norm
for the error in Mach number and [b] for turbulent
viscosity. The left bar represents the GCI and the
right bar the AES estimation.

5.3. VFE-2

As previously discussed, sufficient resolution is neces-
sary in order to carry out a meaningful grid study.
Therefore asymptotic behaviour is verified for selected
aerodynamic coefficients. Figure 8 shows the evolu-
tion of the drag and yaw-moment coefficient for the
VFE-2 geometry in dependence of the number of grid
points per mesh. Both coefficients show clear asymp-
totic behaviour and approach a grid-independent limit.
Consequently it is assumed that all grids have a high
enough resolution for a valid study.

FIG 8. Grid dependency of the drag and yaw-momentum
coefficient

For aeronautical applications, especially the develop-
ment of delta-wing aircraft, the surface pressure distri-
bution plays a crucial role since all aerodynamic forces
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and moments are computed based on CP . Figure 9
highlights the grid-related differences in the CP dis-
tribution. Especially on the coarse grid, the strength
of the suction footprint of the outward leading edge
vortex is underpredicted. The region of strong nega-
tive pressure ends at a stream-wise location of approx.
x/c = 0.65, whereas the fine and reference mesh ex-
tend the region up to x/c = 0.8. This discrepancy is
also highlighted by the error estimation. Additionally
it can be observed, that the footprint of the primary
vortex is not captured with decreasing cell density. In
Figure 9, the dash-dotted line represents the vortex
core of the primary vortex. It can be seen that only
the fine grids are able to predict the low-pressure area
between x/c = 0.7 and 0.8.

FIG 9. Pressure coefficient CP distribution on the up-
per side of the wing computed on the coarse [a],
medium [b], fine [c] and reference [d] mesh.

The mesh induced error is presented in Figure 10 [a].
Sub figure [b] displays the estimated error obtained by
calculating the GCI and lastly [c] shows the estimation
through the AES method. Both schemes are able to
capture the overall shape and location of the surface
pressure error well. Comparing the magnitude of the
estimated error, severe differences become visible. The
GCI is able to predict the error magnitude in CP with
good accuracy. On the contrary, the AES scheme re-
sults in a over conservative estimate and significantly
overestimates the error magnitude. This is confirmed
by looking at [d]. The two bars show the norm of the
difference in error between the reference and estima-
tion. The left bar shows the GCI and the right one
the AES estimate. The latter overpredicts the error
magnitude by approximately factor 5.
Despite surface pressure distribution being the sole
base for the computation of the aerodynamic coeffi-
cients, it is of interest to look at the flow field above
the wing. After all, CP is the footprint of the flow dy-

FIG 10. Contour of the surface pressure coefficient error.[a]
shows the reference error, [b] the estimation using
GCI and [c] the error approximated by the AES
method. [d] shows the norm of difference for the
two error estimations. The left bar represents the
GCI and the right one the AES.

namics. Figure 11 shows a slice through the flow field
x/c = 0.9 near the trailing edge. The top contour dis-
plays the vorticity magnitude obtained from the simu-
lation on the reference mesh. One can clearly identify
the strong outboard vortex and the weaker primary in-
board vortex at a span-wise location y/c = −0.26. The
three contours 11 [b]-[d] visualise from top to bottom
the reference error, grid convergence index and approx-
imate error scaling estimate. As previously shown for
the surface pressure, both error approximations cap-
ture the error with great detail. Errors are primar-
ily located at the leading edge where the shear layers
starts to roll up and at the location of the primary
cortex, since coarse grids have difficulties resolving it.
Visual inspection leads to the conclusion that the GCI
and AES method manage to predict the error magni-
tude with good accuracy.
Finally, the quantitative analysis is carried out for the
flow field above the wing at different stream-wise lo-
cations. The ℓ1-norm for the difference between the
reference and estimate error in vorticity ω is displayed
in Figure 12. The left bar represents the estimate from
the GCI and the right bar shows the estimate obtained
from the AES. With an exception at x/c = 0.7, the
approximate error scaling method provides the more
accurate prediction of the total error magnitude. In
addition, AES has a larger portion of error that is over-
estimated compared to the GCI. Therefore, it can be
concluded that the AES provides a more conservative
estimation.
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FIG 11. Vorticity contour plot at x/c = 0.9 [a] and abso-
lute vorticity error contour at x/c = 0.9 for the
reference error [b], GCI [c] and the AES method
[d].

FIG 12. Summation norm of difference between reference
and estimated error for three selected stream-wise
locations. The left bar represents the GCI and the
right bar the AES estimation.

6. SUMMARY AND CONCLUSION

The proposed estimation procedure "local GCI" fails
to give a reasonable error estimate. The other two
investigated methods show potential for practical im-
plementation of error estimation into the CFD work-
flow. It has been shown that the algorithms can pro-
vide useful insights into discretisation errors, even if
not all formal conditions for the application are met.

Areas with significant error can be identified. Even
though the error magnitude can be difficult to pre-
dict correctly, it is safe to say that the procedure lays
a solid ground for grid improvement. Both methods
have benefits and drawbacks. While the GCI index
only needs two meshes to estimate the error, it requires
the determination of a typical cell size. The influence
of complex geometries and local refinement through
mesh size based weighting could be investigated in the
future for a more accurate cell size determination. The
AES method on the other hand, neglects the use of
both order of convergence and cell size. Instead, it re-
lies on solutions on three different meshes, making it
computationally more expensive. Throughout the test
cases, a scheme arises where the AES method overes-
timates the error magnitude, especially for the surface
pressure distribution and Mach number error . This
is backed by Figures 7, and 10. However, for error
estimation, decent overprediction of the error is not
necessarily a bad thing, rather it leads to a more con-
servative result.
Finally, it can be said that the accurate prediction of
discretisation errors still remains a major challenge,
even for simple turbulent flows. The methods are able
to localise regions of significant discretisation error. To
reach the requirements for error estimation set out by
Cary et al. [3] for complex configurations, extensive
effort will be required, especially to accurately predict
the error magnitude.
One ongoing investigation focuses on error estimation
using a single grid, but numerical schemes with vary-
ing order. This would supersede the difficult task of
grid generation and simultaneously eliminate the in-
terpolation error.

Contact address:

robin.moersch@unibw.de
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