
DIGITAL TWINS STORAGE AND APPLICATION SERVICE HUB
(TWINSTASH)

S. Haufe∗, M. Bäßler∗, C. Pätzold†, M. Tchorzewski†, H. Meyer‡, E. Arts‡, A. Kamtsiuris‡

∗ Institute of Software Methods for Product Virtualization, German Aerospace Center, Dresden
† Flight Experiments, German Aerospace Center, Braunschweig

‡ Institute of Maintenance, Repair and Overhaul, German Aerospace Center, Hamburg

Abstract

The digital twins storage and application service hub, in short twinstash, is a software system aiming to provide
a basis for Digital Twins of DLR research aircraft. Initialized in the context of the DigTwin project and its succes-
sor project DigECAT, its current stable prototype supports the upload, download, and search for flight sensor
data and metadata both programmatically via python and graphically via a browser-based user interface. The
latter additionally allows to quickly and intuitively navigate through the data. It provides rich possibilities to visu-
alize and filter flight trajectories as well as sensor data. In this paper, we give an in-depth view on the twinstash
software system. We provide details on its architecture, continuous integration and deployment, authentication
mechanisms, data model, search, main features of its graphical user interface, and its python client.

Keywords
Digital Twin; ISTAR; ATRA; CODE; HALO; twinstash; data management; web service; visualization

1. INTRODUCTION

The foundation of every Digital Twin is some well-
architected, sound, and scalable software running on
robust and reliable hardware. For DLR research air-
craft, the digital twins storage and application service
hub, in short twinstash, aims to provide exactly that.
It has been initialized by the DLR Institute of Software
Methods for Product Virtualization in the context of
the DigTwin project [1] and its successor project
DigECAT. Since then, its continuous development
by a small team resulted in a stable prototype which
already provides quite some useful components
of a Digital Twin for research aircraft. It supports
the upload, download, and search for flight sensor
data and metadata such as departure airport/time,
arrival airport/time, aircraft, ICAO Aircraft ID, aircraft
registration, and flight trajectory. One way to ac-
cess all data and functionality utilizes python and is
therefore easily usable in fully automated workflows.
Another way is twinstashs browser-based graphical
user interface which allows to navigate through the
data by project, time, aircraft, or by dedicated search
queries. Beyond that it provides rich possibilities to
display flight trajectories in 2D and 3D to visualize
and filter flight sensor data. A fully functional Digital
Twin, however, which provides simulations, predic-
tions, real-time storage and processing is quite some
time in the future. While an additional publication
at DLRK 2022 [2] provides the broad context on
DLR research aircraft and the utilization of twinstash
from an application point of view, this paper focuses

completely on the details of the twinstash software
system itself. We will take a look at its architecture,
authentication mechanisms, continuous integration
and delivery pipelines, deployment, data model, and
main features based on its current version 1.33.

2. ARCHITECTURE

The architecture of twinstash, depicted in Figure 1,
follows the pattern of a web service and hence em-
bodies a service-oriented architecture for distributed
software systems. We utilize a backend which is com-
posed of different software systems doing the main
work like authentication, file serving, and data han-
dling. We furthermore offer several light frontends
which provide users the option to programmatically or
graphically interact with the backend. Frontends and
backend run on different machines and are communi-
cating via a REST1 API2.

2.1. REST API

An application programming interface, in short API,
allows computer programs to communicate with each
other. The principle of Representational State Trans-
fer, in short REST, imposes certain constraints on
how data can be identified and manipulated through
an API. A REST API allows computer programs to
communicate via HTTP requests sent through the

1https://en.wikipedia.org/wiki/Representational_

state_transfer
2https://en.wikipedia.org/wiki/API

1©2023 doi: 10.25967/570104

Deutscher Luft- und Raumfahrtkongress 2022
DocumentID: 570104

https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/API
https://doi.org/10.25967/570104

FRONTENDS

REST
API

BACKEND

Authentication

Twinstash
Service

Service Hub

Application

Storage

Reverse Proxy

Web GUI

Python Client

Other Clients

extendable
to C++,
Java, …

nginx

Keycloak

Twinstash
Service

Authentication

Keycloak

Storage

DOCKERDOCKER

DOCKER

DOCKER

FIG 1. Web service architecture with frontends (left)

and backend using Docker (right).

internet. HTTP requests are based on formatted
strings and hence not bound to a certain program-
ming language, implying that each involved computer
program may be written in a different language. In our
setting, the REST API only accepts TLS-encrypted
HTTP requests, ensuring that no communication may
be eavesdropped by third parties.

Our REST API provides the usual methods to down-
load, upload, manipulate, and erase data. The end-
point offers extensive search capabilities for
data stored in twinstash. The REST API further pro-
vides all files which are necessary for rendering the
graphical user interface in a web browser and some
additional endpoints for authentication.

2.2. Frontends

Currently, we provide two frontends for twinstash, a
web GUI and a python client.

The web GUI runs in any modern web browser. The
user browses to the twinstash url3 (which is currently
available only within the DLR intranet). Approved
DLR users may login with their respective DLR cre-
dentials (Section 2.4.1). They are then provided with
browsing, searching, and visualization capabilities.
We provide further details on the web GUI in Sec-
tion 5.

The python client comes as a python package which
is centrally deployed and can hence easily be in-
cluded in the automated build process of any python
software using twinstash. It allows to conveniently
access all twinstash functionality through python
functions and therewith shields the user from details
of HTTP communication. Authentication is realized
via API keys, we provide further details about that
in Section 2.4.2. Two instances of python software
which are utilizing the python client are presented
in [2].

3

Similar to the python client, further clients for twin-
stash may easily be implemented, e.g. for languages
such as Java or C++.

2.3. Backend

As ’gate keeper’ of the backend, we employ an NG-
INX4 service as reverse proxy. Its purpose is the ter-
mination of TLS encryption on HTTP requests and
their delegation to and from three subservices of twin-
stash: the web GUI provider, the Keycloak, and the
twinstash service. We dedicate Section 3 to details
on how we build and host the backend using GitLab5

and Docker6.

2.3.1. Web GUI Provider

Our web GUI provider serves HTML, JavaScript,
CSS, and image files which can be interpreted by
each modern web browser to render the web GUI
on the client side. We use Angular7 for developing
the web GUI. It provides high-level features to in-
crease the efficiency in GUI development such as the
separation of html and business logic, components
for encapsulation, typescript for compile-time error
handling, and efficient routing between subpages.
Angular generates all the HTML, JavaScript, and
CSS files needed by the browser.

2.3.2. Keycloak

The Keycloak8 is an Open Source Identity and Ac-
cess Management which handles all authentication
needs of the backend according to the OpenID Con-
nect layer on top of the OAuth 2.0 protocol9. We ded-
icate Section 2.4 to more details on the twinstash au-
thentication flow.

2.3.3. Twinstash Service

The twinstash service provides the core functionality
of twinstash. It stores data according to defined in-
tegrity measures, allows to search that data for re-
trieval in small slices, and provides functionality for its
manipulation. It is implemented in python and uses
the Flask10 framework for its REST API. The data is
persisted in an instance of MongoDB11 [3], a NoSQL
Database Management System suited for Big Data
applications. The architecture of the twinstash service
allows scaling in order to serve growing demands to-
wards a service hub by utilizing computation clusters
or a cloud. External applications may be connected
to the twinstash service either as microservice or na-
tive python code. For example, the two instances of
python software presented in [2] which are currently

4

5

6

7

8

9

10

11

2

https://stash.dlr.de
https://www.nginx.com/
https://about.gitlab.com/
https://www.docker.com/
https://angular.io/
https://www.keycloak.org/
https://openid.net/connect/
https://flask.palletsprojects.com/en/2.2.x/
https://www.mongodb.com

Authentication

Stash
Service

Web GUIPython Client

1

2

45

3

6

API
TOKEN

public

public

Keycloak

FIG 2. Authentication flow via credentials (steps � to �)

and via API key (steps � to �).

using the twinstash python client may be integrated
as backend applications in a later stage of twinstash
development.

2.4. Authentication

Some of the data in twinstash is subject to secrecy
due to non-disclosure agreements with third parties.
In order to grant access to dedicated people only,
we need an authentication mechanism. To make
authentication as simple as possible for the user, we
decided to employ the established DLR approach,
allowing users to login via their DLR credentials. An
administrator maintains twinstash access restrictions
by editing a DLR CoMet group. Due to authentica-
tion, twinstash knows which username performs each
request and therewith annotates respective changes
with it. The known username will also allow us to
implement user-specific privileges in a later stage of
twinstash development.

Authentication via DLR credentials cannot be used by
the python client, as this would either force the user
to provide his credentials on each run of a program
(which requires manual interaction and thus renders
automation impossible) or to put his credentials in a
file (which is not secure). We therefore implemented
a second authentication flow via API keys.

Both twinstash authentication flows are depicted in
Figure 2. The flow via DLR credentials is shown in
steps � to � and the flow via API key in steps � to �,
we explain the details in the following two sections.

2.4.1. Authentication via DLR Credentials

When the user browses to the twinstash url12, the
browser requests all files which are necessary to
render the twinstash web GUI (�). The requested
files also contain JavaScript code which is run in the

12

browser and detects that the user is not authenticated
yet. The browser redirects to a login form provided by
the Keycloak which asks for username and password
(� →). The Keycloak passes the credentials to the
DLR LDAP server asking for two things (�):

• Are the credentials correct?
• Does the username belong to the DLR CoMet
group which holds all users who were approved for
twinstash access?

If the answer to one of these questions is ’No’, Key-
cloak aborts the login attempt by showing an error
message in the login form (� ←). Otherwise, it pro-
vides the browser with a signed access JSON Web
Token13 (� ←) which contains the username. The
browser now appends this token to each request sent
to the twinstash service (�). To prevent fraud, e.g.
by a changed username, the twinstash service has to
verify that the presented access token originates un-
altered from the trusted Keycloak. This can be done
by using Keycloaks public key. The twinstash service
retrieves the public key only once and performs the
verification offline without time-consuming additional
requests to the Keycloak.

2.4.2. Authentication via API Key

Since the authentication via API key requires the
generation of an API key via the web GUI, the above
described login flow has to be successfully performed
beforehand once.

After successful login via DLR credentials the user
is authenticated in the web GUI and can browse to
a page which allows the creation of an API key by
clicking a button. This triggers a request to route

(� →). The twinstash service
retrieves the username from the provided access
token and creates an API key for that username in a
dedicated API key database (�). It then returns the
key as result of the request (�←). The key is shown
in the web GUI where the user can retrieve it.

Now the user can use the twinstash python client
along with his API key. On each request, the twin-
stash python client passes this API key along (�
→). The twinstash service verifies that the given
API key is known to its API key database (�). If not,
the request is answered with HTTP code 401 Unau-
thorized (� ←). Otherwise, the twinstash service
retrieves the username for the given key from its API
key database and answers the request according to
its implemented functionality (�←).

3. RUNNING TWINSTASH

In the following sections are described our automated
pipelines to reliably build, test, deliver, and host twin-
stash.

13

3

https://stash.dlr.de
https://en.wikipedia.org/wiki/JSON_Web_Token

Build

Service.whl

GUI-package

Integration.whl

Client.whl

Test

Unit

Unit

Integration

Unit

Deliver

Twinstash Service

Web GUI Provider

Python Client

DOCKER
IMAGE

DOCKER
IMAGE

FIG 3. Continuous integration and delivery pipeline in

GitLab which automatically builds, tests, and de-

livers twinstash.

3.1. Continuous Integration (CI)

For the development of every modern software, unit
tests and integration tests have become indispens-
able. While unit tests focus on small software parts
like functions and classes, integration tests ensure the
overall correct functionality of the software system.
Tests should execute often and hence be triggered
effortlessly to ensure a high quality of the complete
code basis. Triggering tests automatically on modi-
fied code has been framed as Continuous Integration.

In twinstash, we utilize GitLab to implement the
continuous integration pipeline depicted in Figure 3
(stages and). We have three separate
code bases: a python code base for the service,
a python code base for the client and an angular
code base for the GUI. While developing code in
any of those code bases, we write unit tests for the
developed code alongside. Those unit tests function
in isolation, meaning that e.g. the tests for the service
do not use the code for the client and vice versa.
To ensure the correct interaction of the client with
the service, we implement integration tests in an
additional python code base named integration. All
tests can be run locally while developing by the mere
push of a button.

After pushing the local code changes to a remote
GitLab server, it first automatically triggers a build of
all code bases (stage in Figure 3). If that step
was successful, GitLab runs all unit and integration
tests (stage in Figure 3). For python the tests
are executed in all supported versions from 3.7 to
3.11. To test the Angular code, the Karma-Framework
is used.

3.2. Continuous Delivery (CD)

Given that the tests run without error, pushing a
version-tagged commit to the GitLab server results in
triggering the delivery of the built and tested twinstash
system (stage in Figure 3). This ships the
following three components.
• Python client: The python client has been built to a
package during the step of our continuous in-
tegration pipeline. It is now automatically pushed to
the Python Package Registry of our GitLab project.
Every software which uses the twinstash client can

FIG 4. Deployment using four Docker images (left) to

create four twinstash instances by spawning

Docker containers (right).

then access this registry by script to download the
current version.

• Docker image of the twinstash service: The twin-
stash service has equally been built as a python
package during the step. Our pipeline now
automatically runs a dedicated Dockerfile to create
a Docker image. This is done by taking an exist-
ing Docker image capable of running a flask service
and pushing our service package into it. The newly
created image is then delivered to the Docker Con-
tainer Registry of our GitLab project.

• Docker image of the web GUI provider: Again, by
running a dedicated Dockerfile, a new Docker im-
age is created. It pushes the GUI package built by
Angular beforehand to an existing NGINX Docker
image. This new image then also gets delivered to
the Docker Container Registry of our GitLab project.

In a separate process, we also deliver the Keycloak
via a Docker image (cf. Figure 1). Again, we provide
a Dockerfile to build a dedicated customized image.
It takes an existing Keycloak Docker image and
enriches it with configuration settings with respect to
DLR LDAP14 communication and the possibility of
adding external non-LDAP users.

3.3. Deployment

Our deployment utilizes four Docker images: twin-
stash service, web GUI provider, Keycloak, and
MongoDB (cf. Figure 1). During Continuous Delivery
described in Section 3.2, the images for the twinstash
service and the web GUI provider are built and
delivered. The Keycloak image is built and delivered
in a separate process whenever we need an updated
version. For the MongoDB we just take an off-the-
shelf image. An instance of twinstash is launched
using Docker Compose15. Our docker-compose file
assembles all the necessary details on how to create

14

15

4

https://de.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://de.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://docs.docker.com/compose/

Projects

Flights

Measurements

Project 1

Flight A

Data Series X

Data Series Y

Data Series Z Meta Data

Binary Data

FIG 5. Hierarchical data model with projects, flights,
and data series.

four Docker containers out of the four Docker images
and how to correctly plug them together. The file
is configurable with regard to passwords, ports and
other parameters and thus allows to easily deploy
multiple instances of twinstash even to the same
machine.

Figure 4 shows our deployment of four twinstash in-
stances. Besides the productive twinstash instance,
we currently run a development, a test, and a try
instance. The test instance only provides an envi-
ronment to run integration tests against. It allows to
test authentication with a special Keycloak instance
and allows a non-persistent MongoDB instance to
be filled with test data. All twinstash instances are
currently self-hosted on servers of the Institute of
Software Methods for Product Virtualization.

4. DATA MODEL

The twinstash data model depicted in Figure 5 resem-
bles a filesystem tree. Each root element is a project
which contains flights and some files such as project
description or an image of the aircraft. Each flight
contains data series objects and again some files like
flight cards or images of the flight. Metadata can be
attached on all levels to either project, flight, series or
file.
Twinstash employs a MongoDB which provides stor-
age based on JSON16 documents and binary content.
In our setting, we use JSON documents to store all
metadata of a project, flight, series, or file. The tree
structure depicted in Figure 5 is represented in these
JSON documents implicitly by storing references to
parent documents. The actual data of series and files
is stored as binary content in the MongoDB.

4.1. Projects and Flights

An example of a project JSON document is shown
(along with examples for flight and series) in Figure 6.
Besides the properties type (which can have one of
the values project, flight, series, or file), id,

16https://en.wikipedia.org/wiki/JSON

type: project
id: 617707c18169c370c15c6aa7
name: DigECAT

user_tags:
description: Project DigECAT
participating institute: FX
project engineer: MT

created_at: 2021-10-25T19:38:41Z
created_by: baes_mi

type: flight
id: 617707d68169c370c15c6c4f
name: FLIGHT_00054_2017
parent: 617707c18169c370c15c6aa7

user_tags:
experiment: EX192-631
pilot: Smith
platform: ATRA
reference_system: WGS84
signal_type: bus
icao: 3c5192
registration: D-ADLR
start_utc: 2017-02-22T08:24:42Z
stop_utc: 2017-02-22T10:49:14Z

created_at: 2021-10-25T19:39:02Z
created_by: baes_mi

type: series
id: 617707d88169c370c15c6c77
name: geoaltitude
parent: 617707d68169c370c15c6c4f
data_id: 614191cc44ca142e54e3f0cb

unit: m
series_connector_id: scid_69c5c6c50
represents: height

user_tags:
logical_source:

bus: 141754
channel: 27
sensor: _2833562C01
format: BNR
update_rate_hz: 25
dev_firmware: v2.3
pos_sense: up

statistics:
max: 14325.6
mean: 8671.804642568426
median: 7886.70000000000
min: 624.84
nans: 0
size: 8659
std: 4394.061706633204

created_at: 2021-10-25T19:39:06Z
created_by: baes_mi

FIG 6. JSON documents for project, flight, and series.

and name, the document has two system-generated
properties created_at and created_by which store
the time of creation and the username, respectively.
The property user_tags can freely be filled by the
user, also with a complex tree-like sub JSON. All the
properties of a project JSON document are also
present in types flight, series, and file.

The JSON document for a flight (cf. Figure 6) has
only one further property parent which references the
project it belongs to.

4.2. Series and Files

Each series JSON document (cf. Figure 6) also has
the parent property and uses it to reference the
flight it belongs to. Property unit stores the unit of
the parameter represented by this series. Property
series_connector_id allows to connect several
series just by sharing the same series connector ID.
Each series represents a 1D data set in our data
model, and we use series connector IDs to connect
parameter values to corresponding time values this
way. They also allow to join multiple parameters
together to form a table which is useful e.g. to save
database storage space when several parameters
rely on the same time sampling. Property represents

can be used to annotate a series with system infor-
mation such as time, longitude, latitude or height
which is interpreted by twinstash in order to construct
a flight trajectory. Another property statistics

will be automatically generated by twinstash upon
upload of each series. It contains information like the
minimum, maximum, mean, median and standard
deviation for the uploaded series data. This is useful
in particular for search queries such as to return all

5©2023

Deutscher Luft- und Raumfahrtkongress 2022

https://en.wikipedia.org/wiki/JSON

flights flying to an altitude of 5000 meters since this
can be executed on the (rather small) series meta-
data instead of the (usually huge) actual data. This
is also the reason for storing series data as separate
binary content in the MongoDB which is linked into
the series JSON document via property data_id.

Files like PDFs or images are stored similarly to se-
ries by storing a JSON document with the respective
metadata linking the binary content stored in the
MongoDB. The properties of a file are type, id, name,
parent, data_id, size, user_tags, created_at, and
created_by. Property parent references either a
project or a flight.

5. FEATURES

We will now briefly present the main features of the
twinstash system.

5.1. Projects View and Project View

One possibility to access data in twinstash is the
projects view which presents a list of all projects.
Clicking on one of its elements opens the project view
shown in Figure 7 (top). It lists the projects metadata
and files as well as all its flights. Each flight can be
selected which triggers the display of its trajectory
on a 2D map. This map allows to toggle supplemen-
tary flight-related information and supports the joint
display of multiple flight trajectories in separate colors.

In addition to the 2D map, the project view provides
a 3D trajectory view shown in Figure 7 (center) which
equally supports the joint display of multiple flight tra-
jectories. It allows to freely rotate and zoom the view
in all three dimensions and offers a replay feature
which can be used e.g. to evaluate how close sev-
eral aircraft approached each other at certain points
in time. A twinstash use case which employs this fea-
ture is described in [2].

5.2. Flight View and Series View

From the flight list of the project view, a flight may
be selected to open the detailed flight view shown in
Figure 7 (bottom). Like the project view, it shows the
metadata and files of this flight. Furthermore, a list of
all its parameters is shown. This list can be filtered by
names and allows a selection of multiple parameters
for joint time series plots. The plots itself are interac-
tive and support auto scaling to the range of selected
values. Moreover, series metadata and data values
may be displayed alongside.

5.3. Aircraft, Calendar, and Search Views

In the twinstash web GUI, there are several options to
access data of the currently about 1200 flights. The
views described in Sections 5.1 and 5.2 are useful to
dive into the tree structure starting from the projects
view, navigating through the project view down to the

flight view, finally reaching the series view.

Twinstash also provides the aircraft view shown in
Figure 8 (top). It shows an image for each available
aircraft along with information about it. Selecting such
an image shows the flights of this aircraft. Another
option is the calendar view shown in Figure 8 (center)
which provides a chronological overview of all flights
in a calendar style. Clicking on a flight opens the cor-
responding flight view. Finally, twinstash offers the
search view shown in Figure 8 (bottom). It allows
to enter search strings to match metadata according
to its JSON structure. Section 6 shows how search
works based on a python client example.

6. DEMO OF THE PYTHON CLIENT

Let us now consider how our python client can be
used to interact with the twinstash backend. At first,
we import the Client class.17

from stashclient.client import Client

An object of this class can be initialized passing the
name of a twinstash instance as follows.

client = Client.from_instance_name('prod')

Let’s say we know there is a project whose name
ends with Archive and we want to access its content.
The most powerful and flexible approach to achieve
that is twinstashs search feature.18 It allows to match
documents according to their JSON structure, also by
utilizing wildcards such as $* (to match an arbitrary
string) or $exists (to check if a property exists).

client.search({

'type': 'project',

'name': '$*Archive'

})

This search query will return a list of python dictio-
naries, each holding the JSON metadata of a project.
We assume that there is only one such project and
store it into a python variable project. Its dictionary
is as follows.

{

'id': '63c4e8f168e767a7319229f3',

'type': 'project',

'name': 'SP Flight Archive'

}

We will now query all flights in that project utilizing
the fact that all those flights carry this projects ID in
their parent property. We write collection for the
type instead of flight as twinstash uses this more

17In this demo, we show shortened versions of the python code
and sometimes skip or reorder parts of its output. A fully functional
and complete jupyter notebook can be found in the Appendix in
Figures 9, 10, 11, and 12.

18The search feature is not restricted to the python client—also
the web GUI provides the full search functionality via a dedicated
page which allows to put search queries, cf. Figure 8 (bottom).

6©2023

Deutscher Luft- und Raumfahrtkongress 2022

FIG 7. Top: Project View with flight list and 2D map; Center: 3D trajectory plot; Bottom: Flight View with parameter
list and time series plot for selected parameter.

7©2023

Deutscher Luft- und Raumfahrtkongress 2022

FIG 8. Top: Aircraft View; Center: Calendar View; Bottom: Search View with query and map preview of selected
results.

8©2023

Deutscher Luft- und Raumfahrtkongress 2022

generic name.

client.search({

'type': 'collection',

'parent': project['id']

})

The query returns 2537 dictionaries with metadata
on flights, we will restrict the query to get a more
meaningful result. Let’s say we are interested in all
flights the aircraft with an ICAO Aircraft ID of 3c5192
performed on the 28th of June 2021. The ICAO
Aircraft ID is stored in the user_tags property of our
flights, as is the coordinated universal time (in short
UTC) for the start of the flight. We can utilize this
information as follows.

client.search({

'type': 'collection',

'parent': project['id'],

'user_tags.icao': '3c5192',

'user_tags.start_utc':'2021-06-28$*'

})

Please note that we have therewith searched into
subproperties of user_tags. In fact, our search
supports arbitrarily deep subproperty queries. From
our query result, we just take the first flight matching
this query and store it into a python variable flight.
It looks as follows.

{

'id': '63c4ff8668e767a73194292a',

'type': 'collection',

'parent': '63c4e8f168e767a7319229f3',

'user_tags': {

'icao': '3c5192',

'start_utc': '2021-06-28T08:07:15Z'

}

}

Let us now take a closer look at the parameters that
are stored for this flight. The query works quite similar
to the one we used to obtain all flights.

client.search({

'type': 'series',

'parent': flight['id']

})

The query returns a list of python dictionaries, each
containing the metadata of a parameter. Assume we
want to have a closer look at parameter geoaltitude,
the ellipsoidal height with respect to WGS84.

client.search({

'type': 'series',

'parent': flight['id'],

'name': 'geoaltitude'

})

Only one parameter has this name. We therefore
store the first and only entry of the returned list into a

python variable geoaltitude. This is what we get.

{

'id': '63c4ff8868e767a73194294f',

'type': 'series',

'parent': '63c4ff8668e767a73194292a',

'unit': 'm',

'represents': ['height'],

'series_connector_id': 'scid_63c...',

'statistics': {

'max': 13601.7,

'mean': 10573.5898521682,

'min': 701.04

}

}

As can be seen in the output, this parameter has a
height tag that allows twinstash to know that this pa-
rameter contains height information for the trajectory
calculation. The other parameters twinstash needs
in that respect are tagged with time, longitude, and
latitude (cf. Section 4.2). The parameter also has
a series_connector_id which can be used together
with the time tag to find the time series belonging to
this parameter. The statistics property provides
a lot of generated details about the parameter. For
example we see that the flight went up to a maximum
height of 13601.7 meters and was above 10000
meters on average. If we are interested in the actual
data of this parameter, we can retrieve it as follows.

client.data(geoaltitude['id'])

This query returns a numpy array of parameter val-
ues. In order to get the time data, a second similar
query would be needed. Let’s have a closer look at
the trajectory calculation that is performed in the twin-
stash backend. As mentioned before, twinstash is
able to take the flight parameters tagged with height,
time, longitude, or latitude to calculate dedicated
trajectory information. The frontend for example uses
this backend functionality to query the trajectories it
renders in its plots shown in Figure 7 (top and center).
The python client can access trajectory information
as follows.

client.trajectory(

flight['id'],

sampling_rate_in_secs=10,

altitude_unit='m'

)

The parameter sampling rate allows to control the
time interval (and therewith the dataset size). While
a preview in the browser must be quickly loaded but
does not need a lot of precision, a dedicated flight
route analysis may need all the details but could
load slower. Trajectory information has the following
structure.

9©2023

Deutscher Luft- und Raumfahrtkongress 2022

{

'id': '63c4ff8668e767a73194292a',

'units': {

'alt': 'm',

'lat': 'deg',

'lon': 'deg'

},

'items': [{

'alt': 701.04,

'lat': 48.09009099410752,

'lon': 11.29471998948317,

'utc': '2021-06-28T08:07:15+00:00'

}, ...]

}

Property id provides the ID of the flight this trajec-
tory belongs to. Property units contains the units of
the altitude, latitude, and longitude. Property items fi-
nally lists all sampled coordinates. With a little python
code, we can transform the trajectory data to a differ-
ent format in order to pass it on to a matplotlib function
which generates a 3D plot of the downloaded trajec-
tory. The code and plot can be found in Figure 12 in
the Appendix. This is only a small example on what is
achievable with the python client. We might for exam-
ple automatically search for broad ranges of data of
a certain kind and utilize machine learning algorithms
to obtain further insights.

7. CHALLENGES AND OUTLOOK

During the development of twinstash it was quickly
(and obviously) clear that one single IT platform
may not provide a general, all purpose, Digital Twin.
Comparing ISTAR with, for example, a glider reveals
differences that are difficult to address in the same
pieces of code (even before considering domain).
The main development challenges often lie in real
life problems like ambiguous naming, unclean data,
legacy data without support, incompatible data for-
mats, proprietary closed source data formats, and
manual steps involving proprietary software in a
to-be-automated process chain. Those challenges
usually require fundamental changes in already
established processes of different institutes and
departments.

The most important next steps in the development
of twinstash are the composition of an automated
pipeline for the import of new ISTAR data. Accumu-
lating more and more ISTAR flight sensor data with
an increasing number of sensors makes this feature
a top priority item. Also, the demand for ISTAR
data continuously rises together with the number of
users of the twinstash system, rendering features
like a user privilege management and a scalable
distributed backup mechanism more and more impor-
tant. These are about to be addressed in a separate
project which focuses on enhancing the Application
Readiness Level in order to prepare twinstash for
productive usage. Within the DigECAT project, twin-

stash will embed measured 3D real geometry data [4]
as a further important step towards ISTARs Digital
Twin. Further developments will have a clear focus
on providing intelligent functionality via the twinstash
backend, e.g. a parameter health monitoring and an
automated safety reporting tool.

ACKNOWLEDGEMENT

We kindly thank the OpenSky Network association [5]
for granting free access to their database of historic
flight data19 within the scope of our research project.
The intended prototype for an automated safety
reporting tool shall among other criteria automati-
cally determine the distance of the examined aircraft
to other neighboring objects in airspace within a
predefined range. This feature would not be fea-
sible without the access to the OpenSky Network
database.
The research associated with this paper was per-
formed within the project Digital Twin for Engine,
Components and Aircraft Technologies (DigECAT),
which is the 2nd phase of the Digital Twin project
within the aviation program of the German Aerospace
Center (DLR).

Contact address:

sebastian.haufe@dlr.de

References

[1] Hendrik Meyer, Jonas Zimdahl, Alexander Kamt-
siuris, Robert Meissner, Florian Raddatz, Sebas-
tian Haufe, and Michael Bäßler. Development of
a Digital Twin for Aviation Research. In Deutscher
Luft- und Raumfahrt Kongress, September 2020.

[2] Emy Arts, Michael Bäßler, Sebastian Haufe,
Alexander Kamtsiuris, Hendrik Meyer, Christina
Pätzold, and Matheus Tchorzewski. Digital Twin
for Research Aircraft. In Deutscher Luft- und
Raumfahrt Kongress, September 2022.

[3] Shannon Bradshaw, Eoin Brazil, and Kristina
Chodorow. MongoDB: The Definitive Guide, 3rd
Edition. O’Reilly Media, Incorporated, 2019.
ISBN: 9781491954454.

[4] Fiete Rauscher, Jörn Biedermann, Pia Allebrodt,
Christina Pätzold, Frank Meller, and Björn Nagel.
Permanent aktualisierte 3D-Realgeometrie des
ISTAR im Digitalen Zwilling. In Deutscher Luft-
und Raumfahrt Kongress, September 2022.

[5] Matthias Schaefer, Martin Strohmeier, Vincent
Lenders, Ivan Martinovic, and Matthias Wil-
helm. Bringing up OpenSky: A large-
scale ADS-B sensor network for research.
ACM/IEEE International Conference on Informa-
tion Processing in Sensor Networks, April 2014.
DOI: 10.1109/ipsn.2014.6846743.

19http://www.opensky-network.org

10©2023

Deutscher Luft- und Raumfahrtkongress 2022

mailto:sebastian.haufe@dlr.de
https://doi.org/10.1109/ipsn.2014.6846743
http://www.opensky-network.org

FIG 9. Jupyter Notebook Part 1/4

11©2023

Deutscher Luft- und Raumfahrtkongress 2022

FIG 10. Jupyter Notebook Part 2/4

12©2023

Deutscher Luft- und Raumfahrtkongress 2022

FIG 11. Jupyter Notebook Part 3/4

13©2023

Deutscher Luft- und Raumfahrtkongress 2022

FIG 12. Jupyter Notebook Part 4/4

14©2023

Deutscher Luft- und Raumfahrtkongress 2022

	Introduction
	Architecture
	REST API
	Frontends
	Backend
	Web GUI Provider
	Keycloak
	Twinstash Service

	Authentication
	Authentication via DLR Credentials
	Authentication via API Key

	Running Twinstash
	Continuous Integration (CI)
	Continuous Delivery (CD)
	Deployment

	Data Model
	Projects and Flights
	Series and Files

	Features
	Projects View and Project View
	Flight View and Series View
	Aircraft, Calendar, and Search Views

	Demo of the Python Client
	Challenges and Outlook

