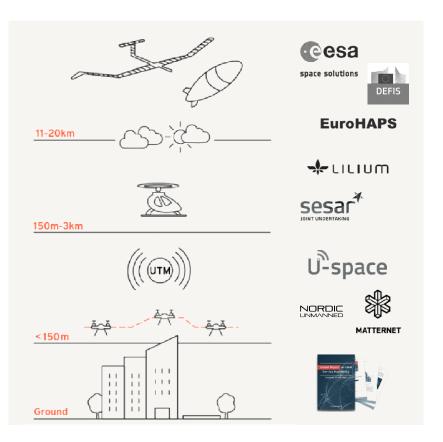


©UNISPHERE

Unisphere in a nutshell – a team of aviation & innovation experts with a legacy in the pioneering Solar Impulse flight around the world

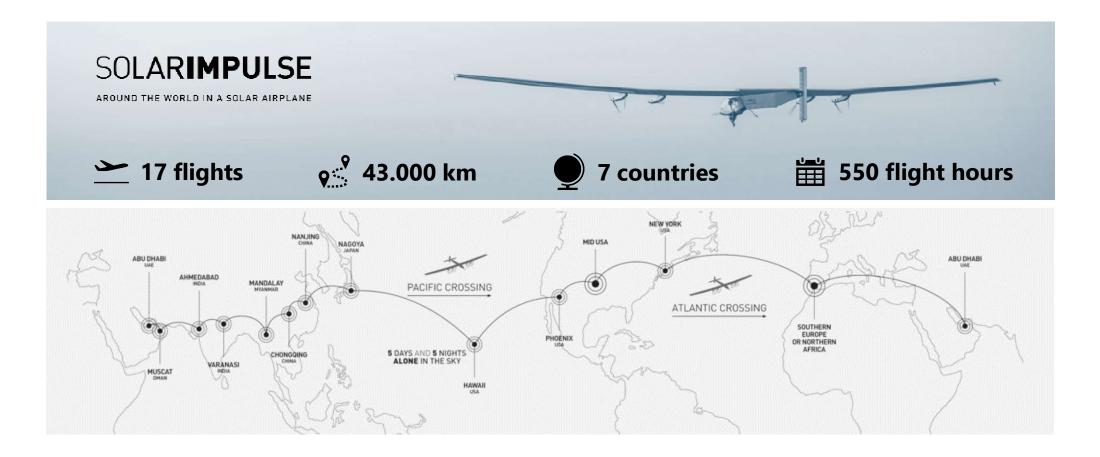

Christoph Schlettig - CEO

Dr. Christoph Selig - CCO

- Founded in 2017 in Konstanz
- Experts for automated and unmanned flight operations
- 15 People, based in Konstanz, Munich and Paris
- Transferring pilot knowhow into reliable technologies
- Active in pioneering projects from ground to stratosphere

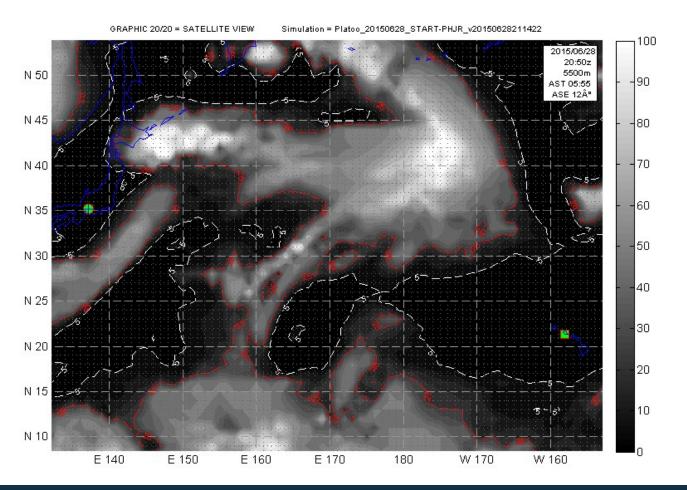
- Founded in 2003 by Bertrand Piccard and André Borschberg
- Based in Switzerland (Zurich, Lausanne, Payerne) with a core team of 90 people
- Funded by over 100 industry- and institutional partners

Solar Impulse 2 – The Aircraft



"Wingspan of an A340, weight of a mid-size car, power of a scooter"

Propulsion 4x13 kW MCI Battery Capacity 4x36 kWh Battery Weight 633 kg Solar Cells 17.248 Max. Solar Power 68 kW Wingspan 72.3m Weight 2.500kg Cruise Speed 24kts Max. Altitude 28.000ft


Solar Impulse - the first circumnavigation of the world by an electrically powered and partly-automated aircraft

Rudimentary flight planning tool – **proven in planning multiple-day flights** considering weather conditions and battery capacity

- successful flight around the world
- Simulation technology provided relevant data – planning was done by the flight ops team
- Mission control center consisted of around 20 people required for data interpretation
 & decision-making

The Paradigm Shift – entering the Era of Unmanned Aviation will lead to fully Automated flight operations in the future

Human-centered aviation (before 1980)

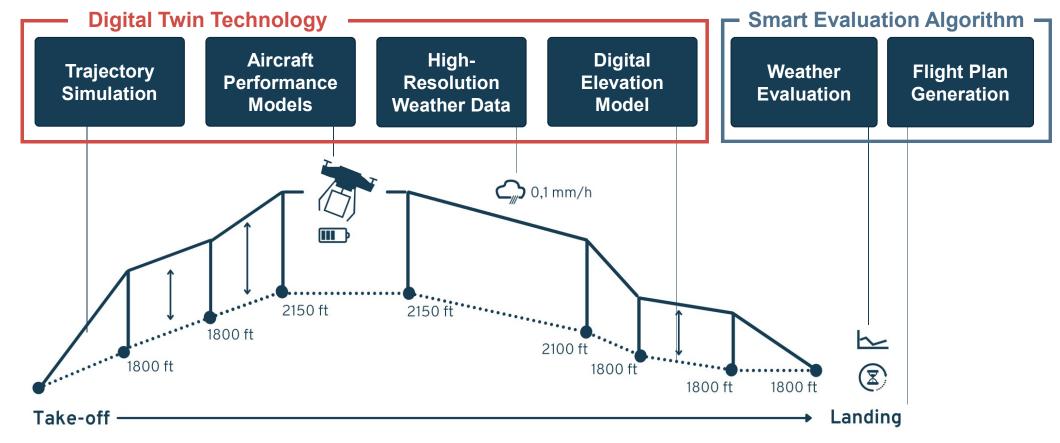

- Flight operations developed historically around humans
- Pilots is the center of the overall safety concept

Human-supported aviation (1980 – today)

- Automated processes monitored by humans making decisions
- Pilots are an important element of the safety concept

Autonomous aviation (>2025)

- Automated processes monitored by computers
- Autonomous decision-making enabled unmanned flight operations



decreasing human involvement

increasing automation |0|0

Weather Model Integration

- Best available weather model the mixed model approach select the best available model for your mission
- Global availability of the weather data, single source for planning all flight operations
- High spatial and temporal resolution
 - Temporal resolution: up to 5 min (model dependent), 20 min (72hours), 60 min (5 days), 180 min (>5 days)
 - Up to 90m depending on weather model
- Historic weather data of past 5 years with more than 1000 parameters available for analysis
- Open to integrate custom weather models

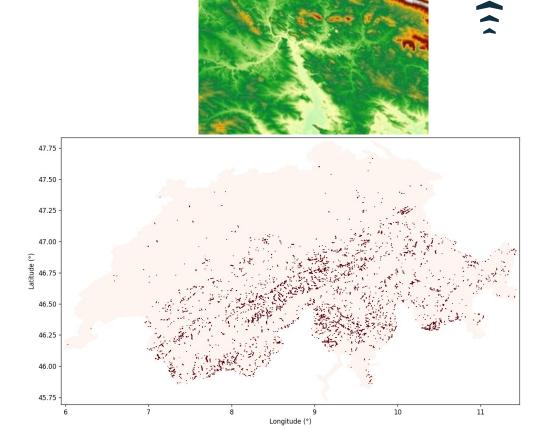
European Center ECMWF

Finish Met Institute FMI

Dutch Weather Service KNMI

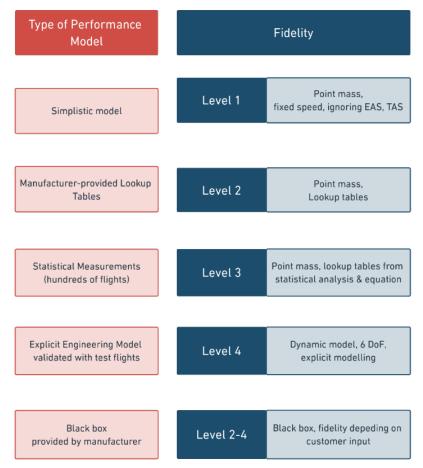
Meteo France MF

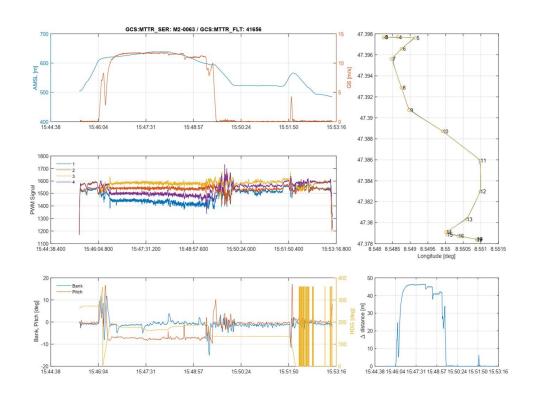
Meteomatics swiss1k


National Weather Center NCEP

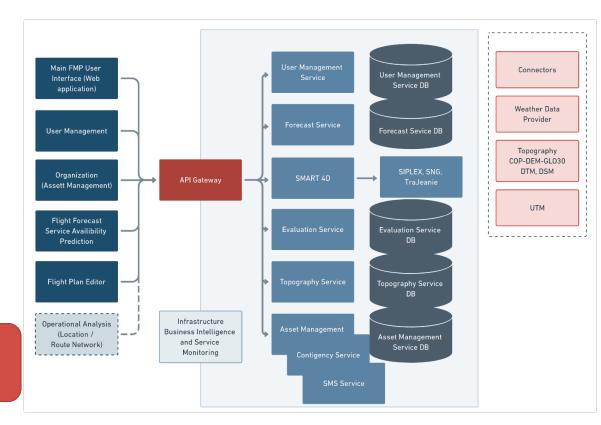
UK Met Office UKMO

German Weather Service ICON/EU


Digital Elevation Model


- Copernicus DEM GLO 30 as global baseline
- (In)validated with SwissTopo terrain data for full Switzerland (0,1% of Switzerland are not with in 99,9% prediction interval)
- Available as API service (for ANSP) and as internal "elevation service" for terrain and any AGL altitude inputs

Performance Model Modelling & Integration Types



Digital twin technology stack - running today, scaling with demand

- Platform-agnostic through micro-service architecture
- Currently hosted at AWS, accessible as SaaS or API
- Discrete-Event-Simulation / variable increment time progression

4D Trajectories simulated: 5,600,000 + 30,000 more per day

The Smart 4D Trajectory can be used to automatically analyze and evaluate weather forecast or historic weather data

Operational Analytics for UAM

Historic Weather Data

- Data-driven analytics of past operational conditions evaluating weather impact on future flight operations
- Supporting vertiport planning, eVTOL design verification, and evaluation of air taxi service viability
- Detailed understanding of future operating conditions

Digital Co-Pilot for drone flight operations

High-resolution weather forecast & observations

- Operations Management platform for drone and air taxi operations
- Pilot know-how and decision-making mechanism transferred to technology
- Underlying simulation technology designed to support piloted and fully autonomous drone operations

Smart 4D Trajectory Technology

Maritime Drone Flight Operations - 1

- Commercial flight operations with significant coordination efforts between multiple stakeholders
- Operators are "paid by hour on station", therefor strong interest to maximize flight times
- Unisphere SaaS used to identify suitable weather windows up to 7 days into the future
- Aircraft limits, payloads limits and operational constrains are taken into account

Maritime Drone Flight Operations - 2

Drone Logistics

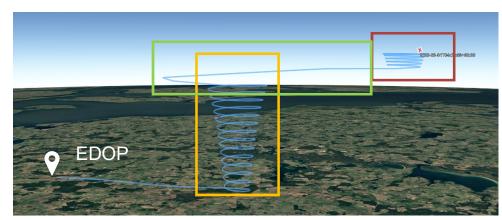
- Managing customer expectations through service availability predictions
- Automated flight planning at takeoff, enroute and landing
- Shore to ship use cases

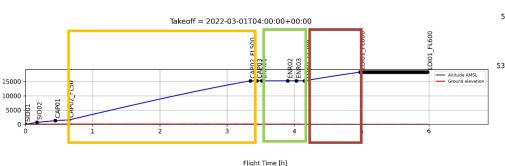
Availability Heatmap – implications for **business case of air taxi services**, supporting sales and business development activities

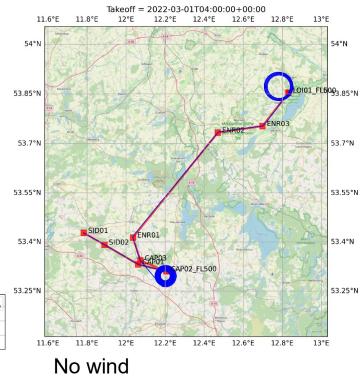
Airport Variable Sub_period	All Total	.T										L	ТВ	A											
Severity	(Mehrere Eleme																								
	Total	00:	00 01:0	0 02:00	03:00	04:00	05:00	06:00	07:00	08:00	09:00	10:00	11:00	12:00	13:00	14:00	15:00	16:00	17:00	18:00	19:00	20:00	21:00	22:00	23:0
Jan	86%	85	% 889	86%	85%	86%	87%	86%	85%	86%	82%	85%	85%	85%	90%	89%	89%	85%	86%	86%	84%	85%	85%	83%	84%
Feb	83%	82	% 839	6 83%	83%	83%	81%	81%	81%	81%	83%	85%	87%	86%	88%	84%	82%	81%	80%	81%	83%	85%	85%	83%	81%
Mar	92%	92	% 949	6 94%	90%	90%	89%	89%	89%	90%	89%	93%	92%	95%	92%	92%	91%	92%	91%	94%	94%	94%	97%	94%	95%
Apr	96%	96	% 959	96%	96%	96%	97%	96%	95%	95%	94%	97%	97%	97%	97%	97%	97%	97%	97%	96%	98%	97%	97%	97%	97%
May	99%	99	% 989	98%	98%	98%	97%	97%	97%	98%	98%	98%	99%	99%	100%	99%	99%	99%	99%	100%	99%	100%	98%	99%	99%
Jun	98%	99	% 979	93%	91%	96%	100%	99%	100%	100%	99%	99%	100%	97%	99%	99%	98%	98%	99%	98%	99%	99%	98%	100%	99%
Jul	99%	99	% 999	6 99%	99%	98%	98%	98%	98%	99%	98%	99%	100%	100%	100%	100%	99%	98%	100%	100%	100%	100%	100%	100%	100%
Aug	99%	100	0% 100	% 100%	98%	98%	98%	99%	100%	100%	99%	99%	99%	98%	98%	97%	97%	98%	98%	98%	99%	99%	99%	100%	100%
Sep	96%	98	% 979	6 97%	95%	95%	96%	96%	98%	97%	97%	97%	96%	96%	97%	95%	95%	95%	97%	97%	98%	97%	97%	97%	98%
Oct	98%	98	% 969	96%	96%	94%	96%	97%	97%	100%	99%	99%	98%	100%	99%	98%	99%	99%	99%	100%	100%	100%	100%	98%	97%
Nov	91%	89	% 889	89%	89%	90%	90%	89%	89%	91%	92%	92%	91%	93%	94%	93%	92%	93%	94%	92%	92%	92%	90%	89%	88%
Dec	88%	87	% 879	6 87%	87%	86%	84%	86%	86%	89%	89%	89%	89%	90%	94%	93%	90%	87%	88%	88%	85%	86%	87%	87%	87%
Year	94%																								

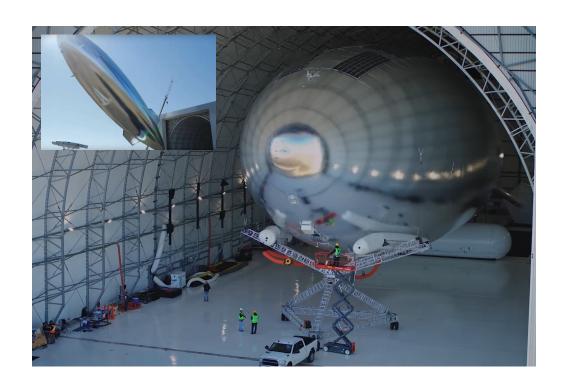
Operational Analytics – **tailored analysis** of a large amount of historic **weather data** and the **impact on future eVTOL flight operations**

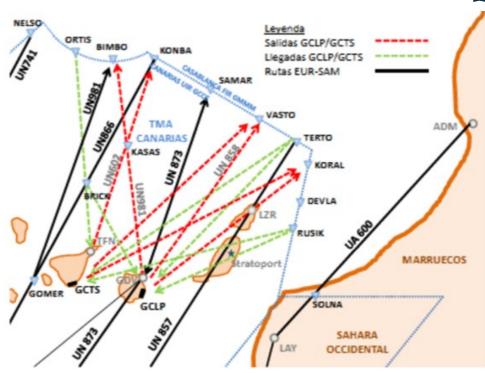
- The weather data is evaluated on an hourly basis, i.e., for the years 2018 2022.
- Given the timeframe and number of parameters around 600.000 data points are analyzed per location.
- If in a given hour one of the parameters e.g., gust factor, was beyond the limit of nominal it was considered moderate or severe.
- Providing a service availability prediction


- Tailored to eVTOL capabilities& specific weather limits
- Scenario planning, i.e. comparing IMC vs. VMC or impact of de-icing system


WX Group	Parameter	Nominal	Moderate	Severe				
	Visibility	> 5000 m	5000-1500 m	< 1500 m				
Visibility	Ceiling	> 500 m	500-150 m	< 150 m				
	Mean Wind speed	< 15 kn	15-20 kn	> 20 kn				
Wind	Gust Factor	< 10 kn	10-15 kn	> 15 kn				
		-20 to +40 °C	-30 to -20 /	- 20/> 1E0 °C				
Temperature	OAT range	-20 to +40 C	+40 to +50 °C	<-30/>+50 °C				
Precipitation	Rain amount	< 2.5 mm/h	2.5-7.6 mm/h	>7.6 mm/h				
Icing¹ (new)	General Icing	Always classified as severe						
	Thunderstorm							
	Sand- or dust storm							
	Funnel clouds							
_	Freezing rain	Always classified as severe						
Dangerous Phenomena	Squall							
rnenomena	Ice pellets							
	Hail							
	Fog							
	Smoke/volcano ash	7						


LUFO Obelisk – operationelles Betriebskonzept zur Luftraumintegration von HAPS


- Initial Climb
 Area : Steigen
- von 5000 ft auf FL500
- Transition
- Route: konstant
- FL500
- Climb Area 2 : Steigen von FL500 auf FL600



HAPS customers – Sceye and Thales

Thank you!

ŞUNISPHERE

Christoph Schlettig

Founder & CEO

+49 178 3308093

christoph. schlettig@unisphere. de

www.unisphere.de