ILT 7 Institut für Lufttransportsysteme 66670 TUHH Technische U. S. AIR FORCE Universität Hamburg

Klimaoptimierter Hyperschall-Flugbetrieb auf Missions- und Flottenebene DGLR-Workshop zum Thema Missionsführung, Bahnführung und Bahnplanung für innovative Luftfahrtanwendungen

D. Bodmer¹ und V. Gollnick¹

¹ Institut für Lufttransportsysteme (ILT), Technische Universität Hamburg, Blohmstr. 20, 21079 Hamburg

23.05-24.05.2023 - Airbus Defence and Space - 85077 Manching, Deutschland

Vortragsübersicht

- 1. Motivation
- 2. Forschungsmethodik
- 3. Routenplanung und Flugprofilmodellierung
- 4. Trajektoriensimulation
- 4.1 Fluggerät
- 4.2 Hypersonic Trajectory Calculation Module
- 4.3 Differentialgleichungen der Flugkörperbewegung
- 5. Emissionsberechnung
- 6. Trajektorienoptimierung
- 6.1 Lärmoptimale Flugtrajektorien
- 6.2 Emissionsoptimale Flugtrajektorien
- 6.3 Klimaoptimale Flugtrajektorien
- 7. Zusammenfassung

Luftverkehr der Zukunft

Luftverkehr der Zukunft

3.1 Routenplanung

• Missionsebene: Auslegungsroute von Brüssel (BRU) nach Sydney (SYD)

Missionsspezifikationen		
Reichweite	18710 km	
Reisefluggeschwindigkeit	Mach 8	
Reiseflughöhe*	105 000 ft (32 km)	
Abfluggewicht (MTOW)	410 446 kg	

• Flottenebene: Flugverbindungen sind abhängig vom Business Case,

= f(Ticketpreis, Zeitvorteil, Komfort, ind. Akzeptanz, Zeitverschiebung, Biorhythmus, ...)

"In this context [...] a fleet of **200** hydrogen fueled **hypersonic airliners** flying **once a day** for **360 days** from Brussels to Sydney [is investigated]."

> Antonella Ingenito (2018) Professor at Sapienza University of Rome School of Aerospace Engineering

3.2 Flugprofilmodellierung

- Betrachtung des Flugverlaufs vom <u>Abheben</u> 3 bis zum <u>Aufsetzen</u> 13: "Trip Fuel"
- Anlehnung der Sollflugbahn an Experimental Flight Management System
 Systematik → Unterteilung des Vertikalflugprofils in Phasen mit Ziel- und
 Abbruchbedingungen ("Phasentabelle") © EUROCONTROL (1996)
- Identifikation von 27 Flugphasen:
 - 3 Reiseflugphasen
 - 10 Steigphasen
 - 8 Sinkphasen

- Unterschall: Berücksichtigung von **ATC-Regularien**; z.B. Fluggeschwindigkeitsbegrenzung auf $V_{Cas} = 250$ kts unterhalb FL 100)
- Hyperschall: Optimierung von Reiseflugphase über Cruise Climb
- Sicherstellung des Passagierkomforts: Lastfaktorbegrenzung
 - \rightarrow Entlang der Hochachse (Lotebene zur Bahngeschwindigkeit): $n_z = [+0.88; +1.3]$
 - \rightarrow Entlang der Längsachse (kollinear zur Bahngeschwindigkeit): $n_x = [-0.35; +0.4]$

4.1 Fluggerät

- Hyperschall-Flugsystem in Waverider-Konfiguration MR3
- Turbo-Staustrahl-Kombinationsantrieb ٠

- Flüssig-Wasserstoff (LH₂) als Flugkraftstoff
- Integration von Antriebssystem in Flugzeugzelle \rightarrow Oberseite: Kombinationsantrieb; Unterseite: Passagierkabine (300 PAX)
- Integral-Blasentankkonzept zur kryogenen LH₂-Lagerung
- Flugsteuerung: 2 Canards
 - 4 Elevons (2 auf jeder Seite)
 - 2 Rumpfklappen
 - Doppeltes Seitenleitwerk

Abmessungen des Fluggeräts MR3

4. Trajektoriensimulation

TUHH Technische Universität Hamburg

4.1 Fluggerät

• Geometriedaten und Massenübersicht:

Baulänge	94.7 m
Flügelreferenzfläche	1365 m²
Leermasse	194836 kg
Besatzung/Ausrüstung	1360 kg
Betriebsleergewicht (OEW)	196196 kg
Treibstoffvolumen (LH ₂)	181 250 kg
Konzipierte Nutzlast	33 000 kg
Max. Abfluggewicht (MTOW)	410 446 kg

© Ferretto (2019)

Abmessungen des Fluggeräts MR3

24.05.2023

4.2 Hypersonic Trajectory Calculation Module

- Software-Derivate von Trajectory Calculation Module (TCM; DLR Hamburg) © Linke (2016)
- Erweitert/Adaptiert zur Berechnung von (realistischen) hypersonischen 4D-Flugtrajektorien
- Implementiert in MATLAB; flexible und modulare Forschungsumgebung
- Flugdynamik abgebildet als **Punktmassenmodell**

7	Impuls (linear momentum):	Zustandsvariablen	3
	Translationsdifferentialgleichungen	$m{\lambda}$	Gleichungen
~	Geographische Position (position):	Zustandsvariablen	3
	Positionsdifferentialgleichungen	${oldsymbol{\delta}}$	Gleichungen

- Zustandsvariablen: $V, \gamma, \chi, \lambda, \varphi, h$ Steuergrößen: $\dot{V}_c, \dot{\gamma}_c/\dot{h}_c, \dot{\chi}_c, F_{TW}$
- Adaptive Euler-Vorwärts Integrationsmethode, die das Tool effizienter macht;
 → Reduzierung der Integrationsschrittweite falls höhere Genauigkeit erforderlich ist (z. B. bei hypersonischen Phasenübergängen)
- Verwendung von höherwertigen Flugleistungsdatensätzen in tabellierter Form ("n-D Lookup-Tables")
 → Triebwerksleistung (ATR: Ispir (2020); DMR: Saccone (2022)) sowie Aerodynamik (inklusive Stabilitäts- und Trimmanalyse: Viola (2021))
- Resultierende **4D-Trajektorie** enthält die **vollständigen** Satz an **Flugzuständen** einschließlich erweiterter Zustandsvariablen wie Lastfaktoren, Kurvenradius, Querneigungs- bzw. Hängewinkel etc.

4. Trajektoriensimulation

TUHH Technische Universität Hamburg

- Fokus auf klimawirksamsten Spurenstoffe für Optimierung \rightarrow Stickstoffmonoxid (NO)- und Wasserdampf (H₂O)-Emissionen
- Verwendung von höherwertigen Emissionsdatensätzen in Form von tabellierten Emissionsindizes (EI) der jeweiligen Spezies (i):

$$EI_{i} = 1000 \frac{m_{i}^{*}}{m_{H_{2},injiziert} - m_{H_{2}}} \left[\frac{g_{i}}{kg_{BF(\bigstar)}}\right] \qquad Oscillation (2022)$$

• Ermittlung der Emissionsmassenströme \dot{m}_i über das Kraftstoffverbrauchsprofil \dot{m}_{FF} :

$$\dot{m}_{i} = \dot{m}_{FF} \cdot EI_{i}(Ma, h) \left[\frac{g_{i}}{s}\right]$$

- Berechnung die entlang der Trajektorie freigesetzten Triebwerksemissionen m_i :

$$\mathbf{m}_{i} = \sum_{t_{0}}^{t_{e}} (\dot{\mathbf{m}}_{i} \cdot \Delta t) [g_{i}]$$

• Zustandsvariablen für Emissionsmassen: m_i für $i \in \{H_2O, NO, H_2\}$

(★) Verbrannter Kraftstoff (engl. burned fuel; BF

6.1 Lärmoptimale Flugtrajektorien (2D-Lateral)

- Berechnung des geometrischen Überschall-Knallteppichs (Mach > 1)
- Software:
 Entwickelt von Bernd Liebhardt (Institut für Luftverkehr, DLR Hamburg) © Liebhardt (2019)
 - ✓ Modellierung der Schallausbreitung über **Sonic Ray Tracing** Methode
 - ✓ Verwendung von Realatmosphäre (ECMWF-Wetterdaten) inkl. Wind
- $\lambda, \varphi, h^{(\star)}$ Eingabedaten: χ, γ, μ Geschwindigkeit Lage Position
- Ausgabedaten: $\lambda_{SB}, \varphi_{SB}$ Position
- Steuergröße für Optimierungsalgorithmus: Laterale Wegpunktkoordinaten λ , φ
- Vorgehen: 1. Berechnung von 4D-Flugtrajektorie
 - 2. Berechnung von Knallteppich
 - 3. Identifizierung von Lärm-Immissionen in Küstenregionen
 - 4. Anpassung der lateralen Navigation
- Ziel: Lärm-Immissionen treffen nicht auf Landmassen und verlaufen nah zu Küstenregic

Te elevisele e Detevile
iecnnische Details
Max. Breite (Mach 8; 95 000 ft; ISA): 146 382 m Max. Breite (Mach 8; 95 000 ft; ECMWF): 377 496 m
= Lärmoptimal

6.2 Emissionsoptimale Flugtrajektorien (1D-Vertikal)

- Ziel: Identifikation von H₂O-/NO-optimalen Trajektorien
 - \rightarrow Trajektorien weisen hinsichtlich des Optimierungskriteriums die kleinste H₂O-/NO-Emissionsmenge auf
- Ansatz: "Brute-Force"-Suche
 - \rightarrow Betrachtetes Höhenintervall: h \in [95 000 ft; 120 000 ft]
 - \rightarrow Inkrementelle Suchschrittweite: 500 ft
- Steuergröße für Brute-Force-Suche ist anfängliche Reiseflughöhe (engl. initial cruise altitude; ICA)
- Ziel: Minimierung des Kostenfunktionals $J_i = \sum_{t_0}^{t_e} (\dot{m}_i(\lambda, \phi, h) \cdot \Delta t)$ mit $i \in \{H_2 0, N0\}$

6.2 Emissionsoptimale Flugtrajektorien (1D-Vertikal)

6. Trajektorienoptimierung

Veränderung der Strahlunasbilanz der Erde aufarund

Konzentrationsänderungen von Spurenstoffen in der Atmosphäre

6.3 Klimaoptimale Flugtrajektorien

- Bewertungsmetrik: Strahlungsantrieb (engl. <u>Radiative Forcing</u>; RF)
 - \rightarrow Wasserdampfemissionen (**H**₂**O**): Direkte Änderung der Strahlungsbilanz
 - \rightarrow Stickoxidemissionen (NO_x): Indirekte Änderung der Strahlungsbilanz über Ozon (O₃) und Methan (CH₄; statistisch nicht signifikant)
- Interpretation: Positiver RF \rightarrow "wärmender" Effekt; negativer RF \rightarrow "kühlender" Effekt
- Software: Entwickelt von Johannes Pletzer (Institut für Physik der Atmosphäre, DLR Oberpfaffenhofen) © Pletzer & Grewe (2023)
- Eingabedaten: (ϕ, h) $(m_{H_20}, m_{N0}, m_{H_2})$ Position Emissionszustände
- Ausgabedaten: RF_{H2O}, RF_{O3}, RF_{total}
 Klimametrik
- Ansatz: "Brute-Force"-Suche
 - \rightarrow Betrachtetes Höhenintervall: h \in [95 000 ft; 120 000 ft]
 - \rightarrow Inkrementelle Suchschrittweite: 500 ft
- Steuergröße für Optimierungsalgorithmus ist anfängliche Reiseflughöhe (ICA)
- Ziel: Minimierung des Klimametrik: $RF(\phi, h, m_{H_20}, m_{N0}, m_{H_2})$

6.3 Klimaoptimale Flugtrajektorien (1D-Vertikal)

TUHH Technische Universität Hamburg

Wie können Hochgeschwindigkeitsflugzeugkonzepte der Zukunft operationell betrieben werden, damit diese möglichst klimafreundlich sind?

Für eine Steigerung der (Flotten-)Reiseflughöhe von 105 000 ft (32 km) auf 120 000 ft (36,5 km) kann die Klimawirkung (gemessen im Strahlungsantrieb) von 170,35 mWm⁻² auf 158,81mWm⁻² gesenkt werden. Dies entspricht einem Delta von $\Delta RF = -6.77\%$

Untersuchtes Flugzeugkonzept: STRATOFLY-MR3

ANHANG

Literaturverzeichnis

Airbus (2021)	Global Market Forecast 2021–2040.
EUROCONTROL (1996)	PHARE: EFMS Phase 1B – Technical Reference Document. DOC 96-70-15, EFMS Integration Team, Brüssel, Belgien, 1996.
Ferretto (2019)	STRATOFLY WP2.1 final report. Technischer Bericht GA-769246, Politecnico di Torino (POLITO), Turin, Italien, September 2019.
Hirschel (1987)	Aerothermodynamik von Überschallflugzeugen. Technischer Bericht MBB/LKE112/HYPAC/1/A, MBB, München/Ottobrunn, Deutschland, März 1987.
Ingenito (2018)	Impact of hydrogen fueled hypersonic airliners on the O3 layer depletion, International Journal of Hydrogen Energy, 43(50):22694-22704. https://doi.org/10.1016/j.ijhydene.2018.09.208, 2018.
ISO 2533 (1979)	Normatmosphäre. https://dx.doi.org/10.31030/1339377. Deutsches Institut für Normung e.V. (DIN). Beuth Verlag GmbH, Berlin.
Ispir (2020)	Thermodynamic efficiency analysis and investigation of exergetic effectiveness of STRATOFLY aircraft propulsion plant. In Proceedings of AIAA Scitech 2020 Forum, Seite 1-10. Orlando, Florida, USA, 2020. <u>https://doi.org/10.2514/6.2020-1108</u> .
Liebhardt (2019)	Sonic Boom Carpet Computation as a Basis for Supersonic Flight Routing. In AIAA Aviation 2019 Forum, Seite 1-9. Dallas, Texas, USA, 2019. https://doi.org/10.2514/6.2019-3387.
Linke (2016)	Ökologische Analyse operationeller Lufttransportkonzepte. Dissertation, Technische Universität Hamburg, Hamburg, Deutschland, Februar 2016.
Niklaß (2019)	Ein systemanalytischer Ansatz zur Internalisierung der Klimawirkung der Luftfahrt. Dissertation, Technische Universität Hamburg (TUHH), Hamburg, Deutschland, Januar 2019.
Pletzer & Grewe (2023)	Wirkung von Emissionen in 30-38 km Höhe auf die Atmosphäre. Präsentation. In DGLR-Workshop zum Thema Missionsführung, Bahnführung und Bahnplanung für innovative Luftfahrtanwendungen (2324. Mai 2023, Manching, Deutschland).
Saccone (2022)	Computational evaluations of emissions indexes released by the STRATOFLY air-breathing combined propulsive system. Aircraft Engineering and Aerospace Technology, 94(9):1499-1507. <u>https://doi.org/10.1108/AEAT-01-2022-0024.</u>
Viola (2021)	Aerodynamic Characterization of Hypersonic Transportation Systems and Its Impact on Mission Analysis. Energies,14(12):1-28. https://doi.org/10.3390/en14123580.

Klimaoptimierter Hyperschall-Flugbetrieb auf Missions- und Flottenebene