
PATTERN-BASED REQUIREMENTS MODEL USING SYSML FOR A
HELICOPTER’S PILOT ASSISTANCE SYSTEM

M. Deshmukh, German Aerospace Center (DLR), Braunschweig, Germany
F-M. Adolf, German Aerospace Center (DLR), Braunschweig, Germany

M. Heisel, University of Duisburg-Essen, Duisburg, Germany

Abstract
Development of a pilot assistance system involves many disciplines. Requirements analysis and traceability
becomes difficult while developing software for such multidisciplinary system. The modeling with SysML
facilitates better design of software along with non-software components. The pattern based requirement
analysis using Problem Frames (PFs) encourages knowledge reuse and provides better understanding of
domain and requirements. Since PFs do not have standard notations and tool support, their use in industry is
limited. In this paper, we introduce a systematic model and pattern based software development method
which combines SysML and PFs in order to cope with the development complexity of a helicopter pilot
assistance system. It also provides SysML based standard notations for PFs. The advantage of the proposed
method is that all the artifacts modeled during the software development are linked together. A smooth and
synchronized transition from requirements elicitation to software design, implementation, testing and
maintenance is achieved.

1. INTRODUCTION

At the German Aerospace Center (DLR), the Institute of
Flight Systems is currently working on the Assisted Low
Level Flight and Landing on Unprepared Landing Sites
(ALLFlight) project. In the ALLFlight project, a helicopter's
pilot assistance system is developed, which allows the
intuitive operation of a manned helicopter from start to
landing on unprepared landing sites and an intermediate
low level flight in the presence of obstacles in a degraded
visual environment. Such a pilot assistance system
provides advanced visual and tactile cues, intelligent
control augmentation, reduces the pilot workload and
increases the situational and mission awareness. Control
software named Online ReConfiguration and Supervision
(ORCS) is developed as a part of the ALLFlight project
[8]. ORCS supervises the current environment situation by
building its model based on the inputs from the different
components of a helicopter. The input data includes
current velocity, stick positions, way-points, sensor data
etc. ORCS processes the input data and sends back the
required reconfiguration parameters to the respective
components. Figure 1 shows the role of ORCS
(supervision and reconfiguration) with respect to other
components of the helicopter using bidirectional arrows.
All components of ALLFlight project are developed,
implemented and tested in the Flying Helicopter Simulator
(FHS) at DLR.

While developing software for a multidisciplinary project
such as ORCS, gathering the requirements and
establishing the relationships between them is a difficult
task. Also there is no standard way for gathering the
domain knowledge (e.g., external environment
parameters, trajectories, waypoints etc.) and representing
it in terms of software engineering. It is difficult to find the
feasibility of requirements against the facts and
assumptions of the participating domains. Maintaining the

changing requirements and requirement traceability is
challenging. There is a need to model the requirements
and establish their links to further design components,
implementation and testing.

Figure 1 Role of ORCS in helicopter operations

Model-based software development is one of the
approaches used for the development of defect-free,
robust and reliable software. It improves software
development processes and the quality of a developed
product (in terms of defect count) [14]. So in order to
overcome the previously stated problems, we describe a
model-based software development approach using
SysML [12] and Problem Frames [10] in this paper. The
proposed approach follows the Development Process for
Embedded System (DePES) defined by Heisel et al [9].

Deutscher Luft- und Raumfahrtkongress 2013
DocumentID: 301305

1

This approach is successfully applied to the development
of ORCS.

In the remaining paper, first we describe the available
software modeling techniques, their shortcomings and
need of our proposed approach. Then as a first step of
our approach, we provide standard notations to Problem
Frames using SysML nomenclature and diagrams. Then
we explain how the requirements analysis can be carried
out by combining Problem Frames and SysML. Later we
describe modeling of software architecture, interactions
between software components using SysML diagrams
and their linking to requirements analysis, implementation,
and testing of software. The paper ends with the
conclusion and future work. As a proof of concept, the
proposed approach is applied to the development of
ORCS.

2. MODELING APPROACHES

Unified Modeling Language (UML) [13] is widely used in
industry for software modeling. However, UML is software
design oriented and lacks in performing system
engineering. Instead of UML, System Modeling Language
(SysML) is more effective for system engineers to model
multidisciplinary system like ORCS, which includes
software and non-software components like hardware,
processes, information, personal, and facilities etc. For
the structural modeling of a system, SysML provides
package, internal block, and block definition diagrams.
For the behavioral modeling of a system, it provides
sequence, state chart, use case, and activity diagrams.
Newly added requirements diagram in SysML provides a
way to specify requirements and relations between them
and a parametric diagram shows parametric constraints
between structural elements. However, SysML lacks in
methodological support. Both UML and SysML do not
cover capturing domain knowledge, problem descriptions,
sub-problems decomposition and domain relationships.
The requirements analysis phase is not modeled.

Problem Frames (PF) are the patterns invented by M.
Jackson [10] that capture and define a commonly found
class of simple sub-problems. They help developers in
understanding the problems. M. Jackson [10, ch. 3] states
that the high level problem description of two problems
could be completely different. However, the sub-problems
could be of the same type. For example, consider a library
management system and ORCS. If we look at a very high
level, given problems fall into two different categories.
However, when we start decomposing these problems, we
realize that they consist of sub-problems of similar type
such as accepting input from a librarian is similar to
accepting operational commands from a pilot or
displaying book query result on a display is similar to
displaying situation information on a display. Thus using
PFs, we can effectively understand and analyze the
problem and then re-use our knowledge in solving them.
However, problem frames are less adapted in the industry
because of the lack of standard notations and tools.

For capturing domain knowledge and relations, a context
diagram could be used [10, p. 20]. It explores the relation
between software and the real world in which it would be
integrated. This gives a clear distinction and
understanding about the problem to be solved and the
participating domains. The context diagram includes

connections (interfaces) and phenomena that are shared
between machine and problem domains. The phenomena
could be events, actions or operations that occur between
the domains. As of now there is no standard template
available for the context diagram. Therefore, context
diagram need to be adapted with modeling language
notations (UML or SysML) for its convenient use.

3. RELATED WORK

In order to overcome the above stated problems and to
make use of good features of SysML and Problem
Frames, Colombo et al. [4, 5, and 6] proposed to combine
SysML and PFs. However, the suggested approach does
not completely comply with Jackson's problem frames
notations. The suggested notation does not take
advantage of SysML diagrams such as a requirements
diagram. The approach does not cover the complete
software development process and it is still design
oriented.

Figure 2 Overview of a proposed approach

In order to cover software development phases
(requirement analysis, design, implementation and
testing) along with the integration of SysML and PFs,
DePES is used. DePES provides a systematic software
development method based on the international software
development standards. DePES consists of twelve steps
which covers complete software development process.
Problem frames and UML are already integrated in
DePES methodology. In this paper, combination of SysML
and PF is integrated with DePES (see Figure 2) which
results into a synchronized model of software consisting
of all the artifacts during the development of software.
DePES covers the development of both hardware and
software components. However in this paper, the scope is
restricted to software development only.

4. STANDARD NOTATIONS TO PROBLEM
FRAMES USING SYSML

Consider a transformation problem frame which deals with
data manipulation sub-problems [10, p.99]. In general, the
task of data transformation based on predefined
processing rules is represented using a transformation
frame shown in Figure 3.

In order to take advantage of PFs for efficient
requirements analysis, we propose to use the Internal
Block diagram and stereotypes of SysML to represent

Deutscher Luft- und Raumfahrtkongress 2013

2

frame diagrams. Figure 4 shows the transformation
problem frame diagram using SysML.

The participating domains (Transformation Machine, Input
and Output) shown in the original frame diagram (see
Figure 3) are shown with the help of blocks in Figure 4.

Figure 3 Transformation Problem Frame Using Jackson’s
notations

The type of each domain such as causal, lexical, and
machine is modeled using stereotypes. The interfaces
between the participating domains are modeled using
binding connectors. The flow items of the binding
connectors are used to represent the phenomena (IN!Y1
and TM!Y2). The requirement oval (IO Relation) is
represented by the requirement element of the
requirements diagram. The textual description of the
requirement can be added into the description tab of the
requirement. A unique identifier can also be assigned to
the requirement for future reference.

Similarly, the generic templates of all problem frame
diagrams could be represented with the help of internal
block diagram of SysML and then could be instantiated as
needed.

5. INTEGRATION OF PROBLEM FRAMES AND
SYSML WITH DEPES

In this section, we apply all 12 steps of DePES to the
development of ORCS based on the proposed approach.
Since the development of hardware components is not
considered in this paper, step 5 and 6 of DePES are
skipped. In this paper, we demonstrate the approach with
only one requirement of ORCS. However, the approach
has been successfully applied to the whole set of
requirements of ORCS [7].

5.1. Requirement Analysis

A clear understanding between the customer and the
developer during the requirements analysis phase is a key
to the successful implementation of the intended software.
In DePES, requirements and domain modeling is carried
out with the help of context diagram, problem frames and
sequence diagrams as described in the following steps.

5.1.1. Step 1: Describe system in use
Generally, the information about the existing system, the
participating domains and the interrelationships between

Figure 4 Transformation Problem Frame using SysML
Notations

them are given by the customer. The customer could
provide it in natural language description or using some
diagrams. Since such information is provided by the
customer, we cannot define a specific type of diagram in
this step. However, for a synchronized software modeling
we recommend user to use SysML block definition
diagram for defining the context of a system.

5.1.2. Step 2: Describe system to be built
In this step, the context diagram provided in step 1 is
refined with the addition of the solution domain (software
to be built) and its relations with the problem domains. As
a first step in the creation of a synchronized model, we
draw a context diagram using a block definition diagram of
SysML. The participating machine and other problem
domains are drawn using a block. The type of each
domain such as lexical or causal or biddable could be
represented by predefined stereotypes. Stereotypes
provide great flexibility while designing a model. The
interfaces between these domains could be shown by
associations. With the help of stereotypes, we can specify
the type of associations. The interface name abstracts the
phenomena shared between the domains. The domain
knowledge provided by the domain expert can be added
into the description field of a block. A constraint can be
used to model conditions or limitations. If required, the
decomposition of domain can be represented by adding
internal block diagrams to the respected domain block.

In Figure 5, a high-level abstraction of ORCS is shown
along with its connections to other domains. All the
components of ALLFlight which are controlled by ORCS
are implemented either on the Experimental Computer
(EC) or Experimental Co-Computer or Sensor Co-
Computer (SCC) of the FHS at DLR. The components
(Domains) include trajectory planning, trajectory

Deutscher Luft- und Raumfahrtkongress 2013

3

 Figure 5 Context Diagram of ORCS using SysML Block Definition diagram

generation, helicopter control, haptic and visual cues and
external environment.

Some of the interfaces between ORCS and participating
domains are defined as follows which define exchange of
actions between them. Similarly other interfaces are
defined.

A = {sendOrcsEcUdpOutput, sendEcOrcsUdpInput}

E = {receiveEcOrcsUdpInput, receiveEccOrcsUdpInput,
receiveSccOrcsUdpInput, parseInput, storeInput,
filterInput, generateOutput, parseOutput, requestRREvent,
checkInputData}

F = {writeLogFile}

After defining the problem domains and the interfaces
between them, the facts and the assumptions about each
problem domain are collected. Then the requirements of
each problem domain are analyzed. Domain experts
describe the desired characteristics in terms of input, data
processing rules, and output requirements. For example,
a trajectory planner provides waypoint calculation and
navigation related requirements, a sensor expert provides
requirements of processing of data captured by the
different sensors from the external environment and a
helicopter controller expert provides requirements related
to handling of side stick and center stick position inputs
etc. The requirements are consolidated from the domain
knowledge gathered in Step 1 and the meetings with the
corresponding experts. As an example, the requirements
of ORCS with respect to problem domain
HubschrauberRegelung (in English: Helicopter Control)
(HR) are shown in Table 1.

Similarly all requirements are gathered. In addition to the
textual description of requirements, we visually model the
ORCS requirements within IBM Rational Rhapsody®
using requirements diagrams. A developer can add
relationships between the requirements as per his/her
understanding which could be then verified by the
customer. Requirements diagrams provide different types
of relations e.g., trace, derived, satisfy etc. in order to

model relation between the requirements and other model
elements.

Name Requirements

Req.3.1_2.1
In order to create a helicopter’s current
situational model, helicopter’s current control
data (e.g., velocity, stick position etc.) need to
be gathered.

Req.3.1_2.2
Based on the helicopter’s current data model,
a possible switching from current to next
regime needs to be calculated.

Req.3.1_2.3
The calculated regime switching must be
conveyed back to the helicopter’s pilot.

Table 1 ORC S - HR Requirements

Figure 6 SysML Requirements Diagram of ORCS with
respect to HR

Deutscher Luft- und Raumfahrtkongress 2013

4

Figure 6 represents the requirements diagram showing
the requirements of ORCS with respect to HR. It visually
represents the requirements stated in Table 1. It shows
how the given 3 requirements are sequentially dependent
on each other. Also it models their relationship with the
elements which implement them. For example,
UDPCommunicationBlock satisfies the requirements
Req.3.1_2.1 and Req.3.1_2.3. This helps in tracing the
requirements. Furthermore test cases could also be
added to the diagram which would verify the
requirements.

5.1.3. Step 3: Decompose problem
Once we know the requirements (problems) to be
satisfied, next step is to perform proper structuring and
decomposition of the given problem. For this, as
suggested in DePES we use Problem Frames. PF models
the relations between the software to be developed,
external users (in case of ORCS, flight test engineer,
evaluation pilot and safety pilot) and the real world.
Mapping of our requirements to the problem frames
provides us with common problem patterns and thus
helps in utilizing previously tested knowledge. While
analyzing ORCS requirements using PFs, we find mainly
three common problem patterns namely model building,
transformation, and data-based control. So instead of
implementing each requirement separately,
implementation based on the PF patterns takes the
advantage of software reuse and in turn saves time and
improves quality.

The second requirement (Req.3.1_2.2) states that the
current and next regimes are generated based on the
incoming data. The incoming data includes velocity and
signals from the side stick and center stick. The regime
recognition is the process of analyzing this incoming data
and mapping them to a defined flight profile. The current
and the next regimes are generated using the Regime
Recognition state chart [1] based on the input data
received from the HR and stored as output data. This is
clearly a case of data transformation from one lexical
domain to the other. Therefore requirement Req.3.1_2.2
can be modeled using the transformation problem frame.
The instantiated transformation problem frame is depicted
in Figure 7.

Figure 7 Instantiated Transformation Problem Frame for
the requirement Req.3.1_2.2

We model requirements based on gathering of data from
real world (e.g., Req.3.1_2.1) using model building
problem frame and requirements based on controlling real
world from generated output (e.g., Req.3.1_2.3) using
data-based control problem frame. Thus with the help of
problem frames, we classify the requirements, identify the
pattern, and identify the role of each domain in each
requirement. Such detailed problem analysis increases
developer understanding. We use SysML based problem
frame notation described in Section 4 which helps to use
problem frames as a standard SysML modeling element
and to further reference it with other modeling elements.

5.1.4. Step 4: Derive a machine specification for
each sub-problem

For checking the implementation feasibility of the
requirements stated in Step 2, we derive the machine
specifications from them. The specifications state the
responsibility of the machine in order to satisfy the
corresponding requirements. This gives us idea whether
the stated requirements are implementable or not. Similar
to the modeling of requirements using a requirements
diagram, we model the specifications using a
requirements diagram. The specification diagram
describing the specifications of ORCS is shown Figure 8.

Figure 8 Specifications Diagram of ORCS with respect to
HR using SysML Requirements diagram

Instead of describing the specifications in natural
language, graphical visualization increases
understandability. Specifications are represented using a
Requirement with a stereotype ``Specification''.

Deutscher Luft- und Raumfahrtkongress 2013

5

Specifications have the same ID as that of the
corresponding requirement (see Figure 6 and Figure 8).
Only the prefix req is replaced with spec. The suffixes a, b
etc. are appended in case multiple specifications are
derived from one requirement. The use of same IDs
increases traceability. Like a requirements diagram,
software components satisfying the specifications could
be added later. The relationships between the
specifications are same as relationships between the
requirements.

After stating the specifications, a sequence diagram is
drawn at least one per requirement in order to represent
the flow of actions and control between the domains. The
correspondence between context diagram phenomena,
problem diagram phenomena and messages in sequence
diagram verifies whether the given requirement is
implantable or not. The sequence diagram provides an
outline for the testing in Step 12.
The sequence diagram for the requirement Req.3.1_2.2 is
shown in Figure 9. It shows the sequence and direction of
interactions taking place between the domains
participating in requirement Req.3.1_2.2. The mapping
between the messages in the sequence diagram and the
phenomena defined in the previous section helps in
maintaining the requirement traceability. This mapping is
shown in Table 2 in Section 6. These messages give an
insight into implementation details. Likewise sequence
diagrams for other requirements are drawn and validated.

5.2. Design
In order to make software comprehensible, DePES
propose to draw the explicit design of software
architecture. Well-designed software can be implemented
systematically and better maintained.

Figure 9 SysML Sequence diagram for the requirement
Req.3.1_2.2

In this approach we use an internal block diagram of
SysML for representing the software component
architecture. The purpose and responsibilities of the

architectural components along with the specification of
interfaces are described in detail. The functional
responsibilities of each component are based on the
underlying common sub-problems. Finally the
architectures of each sub-problem are merged into one
global software architecture which provides a solution to
the main problem. The merging of components is based
on the principles stated by Choppy et al. [3]. As stated
before, in this paper only development of software
components is handled. Therefore the steps 5 and 6 of
DePES are skipped as they describe the development of
hardware components.

5.2.1. Step 7: Design an architecture for all
programmable components of the
global system architecture that will
be implemented in software

ORCS contains only one programmable component. Now
as proposed in DePES, first we decompose ORCS into
sub-components for each sub-problem identified in Step
3. The decomposition is based on the object-oriented
software architecture. Figure 10 shows the architecture of
components that satisfy the requirement Req.3.1_2.2. The
requirement Req.3.1_2.2 deals with the calculation of
regime switching.

Similarly the architectures for all requirements of ORCS
are drawn. All architecture diagrams of the requirements
of ORCS are not included in this paper. Because of the
common patterns in the sub-problems, the same
components are re-used. Finally, we merge the sub-
problem architectures into a global architecture as shown
in Figure 11.

Figure 10 Components Architecture for the requirement
Req.3.1_2.2 using SysML Internal Block diagram

Deutscher Luft- und Raumfahrtkongress 2013

6

Figure 11 Global Architecture of ORCS after the merging
of its all sub-components using SysML Internal Block
diagram

5.2.2. Step 8: Specify the behavior of all
components of all software
architectures using sequence
diagrams

In this step, the behavior of each component from the
global software architecture is modeled using a sequence
diagram. A separate sequence diagram is drawn for each
sub-problem. The signals from the global software
architecture and the specifications from Step 4 are re-
used in this step. The sequence diagrams model the flow
of data, actions and control between the sub-components
of the global software architecture which is required in
order to implement the corresponding sub-problem.

Figure 12 shows the interactions between the
components with respect to the requirement Req.3.1_2.2.

The interface behavior of the components obtained from
the sequence diagram forms the basis for the test
specifications. Messages used in the sequence diagrams
must be consistent with the interface signals defined in
the previous steps.

5.2.3. Step 9: Specify the software components
of all software architectures as state
machines

In this step, we describe the behavior of each component
in terms of internal transitions using state machine
diagrams. We define pre-conditions which are needed in
order to execute the transitions and post-conditions that
are the output of the transition.

From the architecture diagram in Step 7, we know that the
component Sequence Controller is the decision making
component of ORCS (for Req.3.1_2.2). The regime
calculation which is the core logic of ORCS is based on
the helicopter's control data (velocity, stick positions etc.)
received from the component HR. The behavior of the

component Sequence Controller with respect to regime
calculation is shown in Figure 13 with the help of a state
machine diagram.

Figure 12 SysML Sequence diagram showing behavior of
the components of the requirement Req.3.1_2.2

Figure 13 SysML State machine diagram describing the
behavior of the component Sequence Controller of ORCS

Deutscher Luft- und Raumfahrtkongress 2013

7

5.3. Implementation

5.3.1. Step 10: Implement software components
and test environment

Classes and objects are the basic building blocks of
object-oriented programming. In order to synchronize
software implementation (coding) with its design, we draw
class diagrams based the component, sequence and
state machine diagrams of design phase and then derive
the actual code (automatically or manually) using the
classes and their relations shown in the class diagrams.

Figure 14 shows the class diagram of ORCS. All the
classes can be easily mapped to corresponding
components shown in Figure 14.

The methods correspond to the messages in sequence
diagrams and the processing logic described by the state
machine diagrams. As already mentioned, the design
phase diagrams are linked with the requirements.
Therefore this linking between design phase diagrams
and class diagram facilitates the linking between the
requirements and the implemented code. Such linking
helps in achieving requirements traceability and
verification.

Figure 14 Class Structure of ORCS using SysML Block
definition diagram

5.4. Testing

In general a systematic testing reveals the defects created
during the development and ensures the quality of a
product. The last 2 steps of DePES, Steps 11 and 12
describe the details of the testing phase. The focus of this
paper is not on testing techniques. Therefore we are not
going into the details of ORCS testing. However, we

suggest some testing techniques which could be adopted
in future for improving the model-based software
development process.

5.4.1. Step 11: Integrate and test software
components

The unit testing of ORCS is carried out using manual test
cases based on the sequence diagrams created in
previous steps. For testing, DePES does not suggest any
model-based process. So in order to model the complete
software development process, we suggest some
improvements to testing. Model-based testing [2] could be
adopted within DePES in future. The addition of test
cases to requirements diagram would increase
traceability. In DePES, sequence and state machine
diagrams are already used for the representation of
system behavior. We state that these diagrams would
form the basis for the test cases. Therefore the test plan
proposed by Schwarzer [14] based on state charts could
also be integrated within DePES for model-based testing.

5.4.2. Step 12: Integrate and test hardware and
software

In this final step, both the software and hardware
components are integrated. The machine is actually
integrated in the context along with the other existing
components. The actual results of the system after
integrating the developed machine into it are tested
against the expected change in the existing system
described by the requirements. This acceptance testing is
performed by the customer/ end user. The test cases are
based on the sequence diagrams from Steps 4 and 8. In
case of ORCS, the software is tested in FHS at DLR along
with the other components of the ALLFlight project.

6. REQUIREMENTS TRACEABILITY

Requirement traceability helps in improving the software
development process by managing evolving
requirements, in testing for tracing back from failed tests,
and for system documentation and maintenance. It links
each requirement to artifacts which are involved in its
representation and implementation. DePES does not
explicitly specify how to maintain the requirements
traceability during software development. As an
improvement to DePES, we propose to maintain the
requirements traceability matrix throughout the system
development. After each phase, the relationships between
the different artifacts and the requirements is added or
refined in the matrix as shown in Table 2

Also as stated earlier, the SysML requirements diagram
can also be used for requirement traceability. The
developed artifacts can be added in the requirements
diagram and can be linked to the requirements using the
dependency satisfy (see Figure 6).

Deutscher Luft- und Raumfahrtkongress 2013

8

7. CONCLUSION AND FUTURE WORK
This paper has proposed an effective domain as well as
application engineering process using Problem Frames,
SysML and DePES. It has provided SysML based
standard notations to Problem Frames and enriched
requirements modeling in SysML using Problem Frames.
The classification of requirements based on problem
frames helped in finding patterns in the requirements. The
handling of requirements based on such patterns facilita-
tes knowledge reuse. The knowledge reuse reduced the
efforts and increases the quality because of already
verified implementations. Because of the standard
notations using SysML diagrams, problem frames can be
easily understood in terms of a modeling language and
thus helped in adapting them for the modeling of
requirements. The modeling of participating domains,
interrelations between them and their interfaces with
ORCS provided better understanding for the software
developer about the environment in which software is
going to work. The proposed approach satisfied the
standard “V & V” model of software development. As a
result of this approach, a single synchronized model
containing all artifacts from requirement analysis to
implementation is obtained. The overall gap between
requirements, design, implementation and testing is
reduced. The proposed approach is successfully applied
to the development of ORCS and validated in ground
simulator testing in FHS at DLR.

In order to improve the process further, we suggest
integrating model-based testing within the proposed
approach. The use of formal specification languages such
as OCL and Z will also improve the requirements
verification. Synchronization between the models of
different phases would be improved by using automated
requirement traceability mechanism.

Table 2 Requirements Traceability Table for the
requirement Req.3.1_2.1

PHENOMENA
IN THE
CONTEXT
DIAGRAM

PHENOMENA IN
THE FRAME
DIAGRAM

IMPLEMENTED
OPERATIONS

SENDECORC
SUDPINPUT

SENDHRINPUT

RECEIVE
ECORCSUDP
INPUT

RECEIVEHR
INPUT

RECEIVER()

PARSEINPUT PARSEFLIGHT
VELOCITY

PARSEANDSTORE
CHARTOFLOAT()

 PARSEACTIVE
STICKSTATUS

PARSEANDSTORE
CHARTOCHAR()

 PARSESIDE
STICKPOSITION

PARSEANDSTORE
CHARTOCHAR()

 PARSECENTER
STICKPOSITION

PARSEANDSTORE
CHARTOCHAR()

 PARSECOS
MODE

PARSEANDSTORE
CHARTOCHAR()

STOREINPUT STOREFLIGHT
VELOCITY

PARSEANDSTORE
CHARTOCHAR()

 STOREACTIVE
STICKSTATUS

PARSEANDSTORE
CHARTOCHAR()

 STORESIDE
STICKPOSITION

PARSEANDSTORE
CHARTOCHAR()

 STORECENTER
STICKPOSITION

PARSEANDSTORE
CHARTOCHAR()

 STORECOS
MODE

PARSEANDSTORE
CHARTOCHAR()

Deutscher Luft- und Raumfahrtkongress 2013

9

References

1. M. Abildgaard, Entwurf einer Regime Recognition
im Projekt Allflight, Technical Report (111-2009/13),
Institute of Flight Systems, German Aerospace
Center (DLR), 2009.

2. P. Baker, Z. Dai, J. Grabowski, O. Haugen, I.
Schieferdecker, and C. Williams, Model-Based
Testing, Springer Berlin Heidelberg pp. 7-13, 2005.

3. C. Choppy, D. Hatebur, and M. Heisel, Architectural
Patterns for Problem Frames, IEEE Proceedings –
Software, Special Issue on Relating Software
Requirements and Architectures volume 152 pp.
198-298, 2005.

4. P. Colombo, V. Bianco, L. Lavazza, and A. Coen-
Porisini, A Methodological Framework for SysML: a
Problem Frames based Approach, 14th Asia-Pacific
Software Engineering Conference, 2007.

5. P. Colombo, V. Bianco, and L. Lavazza, the
Integration of SysML and Problem Frames,
International Workshop on Advances and.
Applications of Problem Frames 08, 2008.

6. P. Colombo, F. Khendek, and L. Lavazza,
Requirements Analysis and Modeling with Problem
Frames and SysML: A Case Study, European
Conference on Modeling Foundations and
Applications, LNCS 6138 pp. 74-89, 2010.

7. M. Deshmukh, Model-based Software Development
for the Helicopter’s Pilot Assistance System using
Problem Frames and SysML, Master Thesis,
University of Duisburg-Essen, March 2011.

8. M. Hamers, and R. Lantzsch, Assisted Low Level
Flight and Landing on Unprepared Landing Sites,
Technical Report 111-2008/10, Institute of Flight
Systems, German Aerospace Center (DLR), 2008.

9. M. Heisel, and D. Hatebur, Development Process
for Embedded System, Proc. Workshop on Model-
Based Development of Embedded Systems, 2005.

10. IBM, System Engineering Tutorial for IBM Rational
Rhapsody®, 2009.

11. M. Jackson, Problem Frames: Analyzing and
Structuring Software Development Problems,
Addison-Wesley, 2001.

12. Object Management Group, SysML: OMG System
Modeling Language,
http://www.omg.org/spec/SysML/1.2/, June 2010.

13. OMG Unified Modeling Language: Superstructure,
UML Revision Task Force,
http://www.omg.org/spec/UML/2.1.2/, November
2007.

14. B. Schaetz, M. Broy, F. Huber, J. Philipps, W.
Prenninger, A. Pretschner, and B. Rumpe, Model-
Based Software and Systems Development - A
White Paper., http://www4.in.tum.de/
schaetz/papers/ModelBased.pdf, 2004.

15. R. Schwarzer, Testen modellgetrieben entwickelter
Software auf Basis des Rhapsody-OX-Frameworks
am Beispiel der ARTIS-Plattform, Special Interest
Group - Model Driven Software Engineering, June
2007.

Deutscher Luft- und Raumfahrtkongress 2013

10

http://www.omg.org/spec/UML/2.1.2/

