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Abstract 
Distributed integrated modular avionics (DIMA) is a promising concept in aircraft avionics. Aircraft systems share 
resources like calculation power, memory, and sensor/actuator interfaces. Resources are provided by generalized 
devices, which can be installed in distributed aircraft locations. Because of the size and complexity, valid and optimal 
design of such systems is, however, a hard task if carried out manually. It is shown how to support this difficult task by 
solving subtasks of architectural design as mathematical optimization problems. Allocation problems of both, software 
mapping and device installation, are formulated as binary integer programs. Those are used to optimize full or sub-parts 
of avionics architectures for certain objectives, e.g. mass and operational interruption cost, while considering all resource 
and secondary system requirements. A suitable global optimal solver is proposed for solving resulting combinatorial 
optimization problems, which are challenging in complexity and size. The potential of the proposed approaches is 
demonstrated with a reference architecture composed of four redundant aircraft systems. In comparison with manual 
mappings this reveals optimization potentials up to 45%, while calculation times stay below one minute.

1. INTRODUCTION 
The concept of Integrated Modular Avionics (IMA) is 
sharing avionic resources between aircraft systems for a 
more efficient avionics system. Resources in terms of 
computational power and I/O interfaces are provided by 
standardized hardware.  

The first generation of IMA is well established and 
improves weight, cost, and size of avionics systems [1].
However, there is still optimization potential, e.g. IMA is 
not capable of hosting every aircraft function owing to time 
or safety issues. In addition, current implementations do 
not utilize the full resource sharing capabilities, and could 
introduce more cable weight than necessary. Therefore, 
currently the second generation of IMA systems (IMA2G) 
or Distributed IMA (DIMA) is under development. DIMA 
includes new device types with extended capabilities and, 
especially, allows the distribution of devices throughout 
the aircraft, to achieve shorter cables and better response 
times [2]. 

One challenge in designing IMA and particularly DIMA 
systems is the complexity of these safety critical 
distributed computing systems. Resource requirements of 
all individual aircraft systems must be fulfilled, while 
ensuring that all intra- and inter-system constraints like 
reliability, segregation, power, etc. hold. Concurrently the 
designed architecture should be weight and cost optimal 
on aircraft level [3]. 

Optimal resource allocation is a well-known problem in the 
distributed systems domain, e.g. [4, 5, 6]. Most commonly 
it is focused on a single resource type, e. g. processor 
time, and time based sharing. For DIMA the spatial 
distribution is of interest. However, there is a large number 
of approx. 200 different resource types, which are shared 
in overlapping combinations. Moreover, most tasks have 
real-time requirements, and after mapping systems must 
fulfill minimal safety levels. Because of the complexity of 
full-airplane architectures, the ever increasing number of 
avionics functions, and the major impact of the 

architecture on cable length, weight, cost, reliability, and 
maintainability of an avionics system, computer-aided 
design and optimization of IMA/DIMA architectures is a 
growing field of research.  

Sghairi et al. developed a methodology to formally collect 
and evaluate requirements of a flight control systems, if 
the system is mapped to a distributed avionics system like 
IMA [7].  An incremental requirements based design 
process is used to manually optimize the computing 
hardware and its distribution. 

Sagaspe et. al. proposed a combined safety assessment 
and IMA allocation process [8, 9]. Under consideration 
segregation and co-allocation constraints they used a 
constraint solver to derive valid IMA CPU and bus 
allocations, and showed feasibility for a TF/TA system.

Salzwedel and Lohse showed how to use a general 
purpose systems modeling and optimization software to 
optimize IMA allocation subject to communication cost and 
execution time using heuristics for design space 
exploration [10, 11]. 

Salomon proposed an approach for automated systems 
safety computation for IMA hosted systems allowing 
automated derivation of redundancy structures and   
allocation of systems to the IMA platform demonstrated 
with a high-lift system [12]. 

In this paper approaches are presented for optimizing the 
static mapping of a set of dependent system functions to a 
DIMA hardware topology and for mapping DIMA devices 
to an airplane anatomy. In addition, both approaches 
optimize for cost and weight quality measures. Baseline 
for optimization are formal DIMA architecture domain 
models containing logical system structure, system 
requirements, hardware properties, and topology as well 
as aircraft structure. Systems requirements are formalized 
as a set of consumable resources and mapping 
constraints. Both problems are formulated as a binary 
programming problem, which allows solving them globally 
optimal with state-of-the-art solving techniques. The result 
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of an optimization is a valid software and hardware 
mappings optimal to a certain quality measure, which 
supports the DIMA designer in creating optimal 
architectures. 

This article is organized as follows. Section two presents a 
novel approach of how to express and solve the mapping 
problems as binary programs. In section three the 
implementation is presented, as well as a reference 
architecture, quality measures, and an optimization 
experiment to validate and benchmark the proposed 
approach. Section four outlines the results of the 
optimization experiments, which are discussed in chapter 
five. 

2. THEORY 
It is proposed to express the mapping problems as a 
binary programming problem. Binary programming 
minimizes a linear cost function 

(1)

under consideration of linear inequality constraints 

(2)

which inherently includes equality constraints 

(3)

The solution vector  is restricted to be binary.  

2.1. Software Mapping 
A major task of DIMA planning is to define the distribution 
of systems functions on the DIMA devices, the so called 
software mapping. System functions require resources 
from DIMA modules, which are, most commonly, 
processor time for running control or monitor applications 
and I/O interfaces for connecting sensors and actuators, 
e.g. analogue input pins or discrete pins (cf. [13, 14]). In 
addition, safety and performance requirements enforce to 
map some system parts strictly separated or combined [9,
7].

The software mapping problem is shown in Fig. 1.
Hardware topology and software structure, as well as 
number and type of resources needed and provided are 
known. Redundancies are already logically defined, e.g. 
duplex or triplex structures. 

Each DIMA device  is associated with a set of resources 

(4)

it provides for hosting functions.  is the amount of 
available resource of resource type . A resource is a 
representative for anything required and consumed in a 
quantifiable unit by aircraft systems. 

Aircraft systems are modeled as a set of communicating 
atomic software blocks called tasks . A task can be 
assigned to a device if the device is capable of hosting the 
task and if the device provides sufficient resources. This is 
expressed by a set of capabilities  associated to each 
device type. A capability  

(5)

denotes that task  if hosted to the device consumes the 
resources specified in the set of resources  

(6)

The issue is to assign, if possible, every task to a device 
such that the resources on no device are exceeded. In 
addition, segregation, device, location, and power 
constraints have to be considered. 

More detailed information on the selected modeling and 
validation approach of DIMA architectures can be found in 
[15].  

FIG 1. The software mapping problem. Aircraft system’s 
software composed of several signal exchanging 
tasks needs to be mapped to DIMA hardware. 
The mapping is restricted by constraints and 
resource availability. 

For the software mapping problem an entry  in the 
solution vector  represents a unique assignment 
possibility, i.e. there is a  for each capability on each 
device for each task. 

(7)

Where  is the number of elements of the specified type. 
Consequently, solutions are valid assigning a task more 
than once. This is prevented by a set of single assignment 
equality constraints 

(8)

In combination with the right hand side  it 
ensures that each task is assigned exactly once.  

Resource requirements and restrictions are formulated as 
inequality constraint
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(9)

and

(10)

Each entry  contains the number of resources of the 
resource type and device specified by  that would be 
consumed if the task assignment possibility  is used. For 
entries corresponding to task not assignable to that device 
or not requiring this kind of resource .  is the 
number of resource of each kind provided by each device. 
Each row, therefore, ensures that the sum of resources 
required by the current assignment does not exaggerate 
the provided resources of a kind on that device. 

The mapping of tasks is restricted by segregation and 
atomic requirements. Segregation requirements specify 
that two task must not be mapped to the same device. 
This is enforced in the binary program by adding an 
additional inequality constraint for each assignment 
combination that would have two segregated tasks on the 
same device. All constraints are comprised in . 

Atomic requirements are handled similar. An atomic 
requirement expresses that all involved tasks must be 
mapped on the same device. An additional set of 
inequality constraints  contains a constraint for 
each device, where set of atomic tasks can be mapped to. 
It enforces all tasks to this device if one of them is mapped 
there. 

The complete binary problem assembles as  

(11)

and

(12)

If , solving this problem results in a valid mapping if 
a mapping exists, and is infeasible if not. Advanced cost 
functions ( ) can be handled as long as costs are 
introduced by a single mapping. Within section three it is 
shown how to express and optimize for cable weight, 
mass, and operational interruption costs. 

2.2. Hardware Mapping 
A similar problem is the mapping of devices to installation 
locations. The hardware mapping problem is depicted in 
Fig. 2. Hardware and installation topology are known. 
Software is already mapped to the hardware. Installation 
locations are suitable spaces to assign devices. However, 
device installation might require installation resources, e.g. 
volume, slots, and cooling capacity, which must be 
available in a sufficient quantity. In addition, peripherals 

have fixed installation locations, which define cable 
lengths . 

FIG 2. The hardware mapping problem. DIMA hardware 
with mapped functions needs to be mapped to 
available installation locations restricted by 
installation resources, like slots, and peripherals. 

For the hardware mapping problem the solution vector 

(13)

has an entry  for each possible assignment of a device 
to an installation location, i.e. the installation location has 
sufficient resources for hosting this device. A unique 
assignment of each device is ensured with a set of 
equality constraints 

(14)

In addition, an exceeding of installation resources is 
prevented with an inequality constraint and  for each 
installation resource type for each installation location.  

Since software mapping is fixed, segregation constraints 
cannot be violated by device mapping. Installation 
segregation constraints, however, needs to be considered. 
Therefore, an inequality constraint is added for each 
possibility that two devices that need to have segregated 
installation locations could map to the same installation 
location. Segregation constraints are collected in 

. 

The complete binary problem is built again by the 
concatenation of constraint matrix. 

(15)

If a solution exists solving this binary problem with 
results in a valid device mapping. Advanced cost functions 
are mass and operational interruption cost as shown in
section three. 
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2.3. Solving 
Binary Programming problems belong to the class of NP-
complete problems [16], i.e. the number of calculations 
necessary for solving the problem is almost proportional to 
the number of all theoretic solutions. In general, those 
problems can either be solved globally optimal by testing 
all solutions, which results in long up to infeasible 
calculation times or heuristically. Heuristics, in general, do 
not result in the globally optimum, but find “good-enough” 
solutions. Often the quality of the result is tunable by the 
calculation time spend. A trade-off between both domains 
is non-deterministic global search. Such algorithms 
leverage problem properties to achieve calculation times 
that are on average far below that of global search. The 
worst case calculation time is, however, not reduced. 
Benchmarks for both mapping problems showed that the 
most common branch-and-bound approach still leads to 
infeasible calculation times for realistic problem sizes.  
More advanced branch-and-cut algorithms showed 
feasible calculation times [17]. The latter is, therefore, 
proposed for solving both mapping problems. 

3. METHODS AND MATERIALS 
The proposed approach is demonstrated by optimizing 
manually mapped reference architecture subject to 
different quality objectives. This section describes the 
optimization implementation and environment, as well as 
the used quality measures, the reference architecture and 
the experiment’s setup. 

3.1. Environment 
Input and output for optimization are stored in a custom 
domain model for DIMA architectures. This model is edited 
and evaluated within the Eclipse-based modeling 
environment for DIMA architectures, called optDIMA [15,
18]. Within the TUHH software tool optDIMA the 
optimization algorithm, the objective, and the objects to 
optimize are selected. Optimization inputs are 
automatically derived from the model and transformed into 
the corresponding binary problem matrixes. Information 
extraction and problem matrix creation takes place in 
MATLAB because of the high number of involved 
mathematical operations. Model data is exchange 
between optDIMA and MATLAB in XMI format [19]. The 
binary programming problem is solved using the branch-
and-cut solver of the CPLEX optimization environment 
[20]. Result interpretation and back-transformation to the 
DIMA architecture model takes place in MATLAB before 
the final result is visible in optDIMA. Fig. 3 depicts the full 
tool chain. 

All mapping optimizations were carried out on an Intel 
Xeon E31270 at 3.4 GHz with 8 GB RAM running 
Windows 7. MATLAB Version 2011b in combination with 
CPLEX 12.4 was used.  

3.2. Quality Measures 
Four quality measures are used to compare optimization 
results and the reference architecture. In addition, all 
measures are used as optimization objectives for the
software mapping optimization and two are used for 
hardware mapping optimization. 

Peripheral wire mass is a major contributor to the overall 
mass of an avionic system. It comprises the mass of all 
cables that connect peripherals to DIMA devices. The 

mass of a peripheral cable is calculated as the length of 
the cable times the weight per length, which is a property 
of the used cable type. Software mapping of tasks 
requiring peripherals directly influences the peripheral wire 
mass, since the peripheral connection wire must be routed 
between the peripherals installation location and the 
installation location of the DIMA device the task is mapped 
to. Each assignment possibility is, therefore, weighted with 
the mass of the cable  that would be needed for this 
assignment.  

(16)

The cable routing is estimated as the shortest path 
through the cable route graph from the installation model. 
Task with no peripheral connection do not contribute to the 
cost vector. Hardware mapping influences peripheral 
cable mass in the same way. However, the movement of 
one device from one installation location to another 
changes the cable length of all peripherals connected to 
task on that device. A devise assignment possibility is, 
therefore, weighted with the accumulated mass of all 
affected cables. 

FIG 3. Optimization tool chain. Architectures are 
developed, validated, and evaluated in optDIMA. 
MATLAB is used for forward and backward 
transformation between model elements and 
binary problem. CPLEX solves the given 
problem. 

Device mass is the accumulated mass of all DIMA 
devices of the architecture. The mass of each device is 
defined by the device type, which is associated with a 
constant mass value. The only possibility to change device 
mass by mappings to create empty and, therefore, unused 
devices during software mapping. Mapping devices 
always results in the same device mass. Since device 
mass is not defined by a single task assignment 
possibility, the solution vector and all matrices of binary 
problem the need to be extended by  assistant 
variables [21] representing whether a device is used or 
not. The cost  vector for those variables is assigned to 
the mass of a single device . 

(17)
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Mass is the sum of peripheral wire mass and device 
mass. It is, therefore, the trade-off between using less 
devices and accepting longer cables. Since device mass 
is only changeable trough software mapping, mass 
objective is also only available for task mapping
optimization. The corresponding cost vector  for the 
binary problem is built by combining the cost vector for 
peripheral wire mass  with the last part of the device 
mass cost vector . 

(18)

Operational interruption costs (OIC)  are the costs 
resulting from flight delay or cancelation because of 
unscheduled maintenance operations on the avionics 
system, e.g. repair or replacement of DIMA devices. The 
OIC for one device  is the sum of costs introduced by 
cancelation  or a delay .

(19)

Whether a flight is delayed or canceled is decided on the 
Minimum Equipment List (MEL) code of the device and the 
time needed for repair [3]. Therefore, and
are functions of the MEL level, the repair time, and the 
module reliability, i.e. critical functions mapped to reliable 
modules in fast  accessible installation locations minimizes 
OIC. Here three MEL levels are defined. GO means the 
flight can continue with the failed equipment. GOIF means 
the flight can continue if certain conditions hold. NOGO 
means the failed equipment must be repaired before take-
off. In case of DIMA the MEL level of a DIMA device is 
defined by the most critical function mapped to the device. 
MEL levels are defined for task and task groups in the 
domain model. The repair time is composed of the time 
needed to access the device and a fixed amount of time 
needed for repairing a device. The latter is a property of 
the device type. The access time is specified for each 
installation location. For instance devices in the avionics 
bay can be replaced faster than the devices installed in 
the tail. Since OIC is not influenced by the individual 
assignments but a combination of assignments, the cost 
vector for OIC  for the task assignment problem
equals zero for each assignment and is extended by 

 additional variables. Each of the additional entries 
contains the OIC that the device would have if it has a 
certain MEL level.

(20)

For the device mapping problem the MEL level is known 
for every device. Therefore, the cost vector contains at 
each assignment possibility the OIC that the device would 
cause if assigned to a certain installation location. 

3.3. Reference Architecture 
Validation and benchmarking of the proposed optimization 
approach is carried out with a DIMA reference 
architecture, which is an excerpt of and airplane’s full 
architecture. However, the reference architecture is a fully 
functional mapped DIMA architecture based on an IMA2G-

platform. Fig. 4 shows the reference architecture, and Tab. 
1 summarizes most important quantities. 

The selected platform is composed of Core Processing 
Modules (CPM) and Remote Data Concentrators (RDC),
which are connected over a redundant AFDX network. 
CPMs are pure computing modules. RDCs provided I/O 
connectors for peripherals and connect them to the AFDX 
network. Switches connect several devices on the AFDX 
network. Switches and RDCs are distributed modules, and 
can be installed in four installation locations. Those are the 
aircraft’s nose, the avionics bay (below the cockpit), the 
middle and the tail. CPMs can be installed in the avionics 
bay only. Two types of CPM and RDC cope with 
dissimilarity requirements. The processing powers of the 
CPM types differ and both RDC types have a different 
number and types of I/O interfaces. In summary, two 
CPMs of each type, eight RDCs of type one and two of 
type two are installed (s. Fig. 4(c)). In addition, 40 
peripherals are installed in 15 additional installation 
locations all over the aircraft connected by cable routes of 
known length (s. Fig 3(d)). 

Four related systems have been selected from the 
oxygen, pressure, air, and air-conditioning domain1. All 
four systems (s. Fig. 4(a)) are duplex systems, i.e. each 
system has a fully redundant counterpart. Both 
counterparts need to be segregated. In addition, an inter-
system constrained requiring dissimilar device types is 
enforced between SYSTEM 2 and SYSTEM 4. As 
depicted exemplarily in Fig. 4(b) all systems have a main 
controller task and several I/O task for each connected 
peripheral. The controller task requires computing 
resources. The I/O tasks require different combinations of 
ten I/O types. In addition, the criticality, i.e. the MEL level, 
of the systems was set to NOGO for SYSTEM 3 and 4, 
GOIF for system 1 and GO for SYSTEM 2. 

An initial mapping was created manually. Tasks have 
been placed on modules closest to the belonging 
peripheral, while considering the segregation constraints. 
The I/O resources per RDC were determined by assigning 
each RDC type the I/O types used by the peripherals 
connected to this RDC. The number of I/Os of each type 
was set to the maximum number of this I/O type used on 
any RDC instance.  

Tasks 58

Devices 14

Peripherals 40

Installation Locations 19 (4 for DIMA devices)

Resource Types 10

Possible Task Mappings 1008  Solutions

Possible Device Mappings 194 Solutions

TAB 1. Quantities of reference architecture. Possible 
mapping entries denote the number of theoretic 
solutions for the optimization problem. 

                                                          
1 System names have been obscured 
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(a) Software of four duplex aircraft systems. Tasks (light blue) of each system instance are grouped in task 
groups (dark blue). Dashed lines denote segregation constraints. Purple boxes and lines are peripheral 
components required by tasks. 

(b) Inside view of SYSTEM 1 A. TASK 0 is the main controller task. Other tasks are I/O tasks connected to 
peripherals. Arrows denote directed message flow (signals). Each task has certain resource requirements and 
needs to be mapped to DIMA modules. 

(c) DIMA hardware topology consisting of four CPMs ten RDC connected over a redundant AFDX network with 
eight switches 

(d) Aircraft anatomy for avionics installation. Boxes denote installation locations, which can provide installation 
resources (screws), and are connected with cable routes and joints. Installation locations providing resources 
for DIMA devices are NOSE, AVIONICS BAY, MIDDLE, TAIL.

FIG 4. Reference architecture for optimization experiments. Depicted are systems software (a), a detailed view on 
SYSTEM 1 A, the DIMA hardware topology (c), and the aircrafts installation structure (d).  
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3.4. Optimization Experiments 
The proposed optimization approaches were used to carry 
out six optimization experiments based on the reference 
architecture. Four task mapping optimizations were carried 
out with the objectives  

- peripheral wire mass, 
- device mass, 
- mass, and 
- operational interruption cost (OIC). 

In addition, two device mapping optimizations were carried 
with the objectives 

- peripheral wire mass and 
- operational interruption cost (OIC). 

The resulting architectures were validated in optDIMA for 
resource exceeding and constraint violations. In addition, 
the all four quality measures, i.e. peripheral wire mass, 
device mass, mass, and operational interruption cost were 
calculated for each optimized architecture and the 
reference architecture. Based on this result the six 
optimized architectures were compared to the mapping of 
the reference architecture. Moreover, calculation times for 
optimizations were recorded. 

4. RESULTS 
All six optimization experiments resulted in valid 
mappings. The run-time for task mapping was between 
32s and 36s. Device mapping took 45s. In both cases the 
calculation time splits in approximately 64% pre-
processing and problem building, 2% solving, 28% post 
processing.  

Fig. 5 shows the evaluation of the six optimization 
experiments. It depicts how the value of each of the four 
quality measures for each optimization experiment 
changes relative to the value of the manually mapped 
reference architecture.  

Fig. 5(a) shows the change in the peripheral wire mass. 
Notably, none of optimizations resulted in a lower cable 
mass than that of the reference architecture. However, 
both optimizations subject to the peripheral wire mass 
resulted in an equivalent wire mass. This validates the 
assumption that the chosen manual mapping process 
results in the shortest possible cable length. The highest 
increase of peripheral wire mass is perceived when 
optimizing for OIC. The OIC increased to 186% after 
software mapping and to 227% after hardware mapping. 

Fig. 5(b) quantifies the change in device mass. By concept 
no optimization resulted in an increased device mass, 
since all devices are allocated in the reference 
architecture. Moreover, device assignment optimization 
cannot change the device mass. However, all task 
assignment optimizations resulted in a lower number of 
used devices, which is remarkable, since the number of 
resource per module type is exactly adapted to the 
reference mapping. This hints to a not optimal decision on 
the number of needed devices during the manual design 
or to additional requirements not covered in this study.
Optimization for device mass and cumulative mass 
resulted both in using only nine of the 14 device used in 
the reference architecture.   

Fig. 5(c) depicts the relative change of combined 

peripheral wire and device mass. The highest reduction 
down to 74% is perceived by optimizing for this objective. 
Since the device mass of this optimization equals the 
device mass of the device mass optimization, this reveals 
a non-unique solution space for the latter. The highest 
increase up to 111% is archived optimizing device 
assignment for OIC.  

 The most significant improvement of 48% is made in OIC 
as depicted in Fig 5(d). The latter is archived by task 
assignment optimization subject to OIC, by grouping 
NOGO tasks on modules in easily accessible installation 
locations. For device assignment a reduction of 39% is 
archived. Except the optimization for peripheral wire mass 
the OIC of all optimized architectures is lower or equal 
than that of the reference architecture. Besides the 
distribution of tasks, the lower number of used devices in 
experiment 2 and 3 majorly caused the reduction. 

5. DISCUSSION 
The proposed optimization approaches resulted in valid 
architectures in all optimization experiments. No violation 
of resource or secondary restrictions was perceived. 
Moreover, algorithm run-times do not prevent practical 
application. Especially the short run-time of the solver is 
surprising. It seems that the special problem structure of 
both mappings helps to solve the generally hard to solve 
binary programming problem unexpectedly fast. It can be 
stated, therefore, that both approaches are at least 
capable of identifying valid mappings, which, if doing it 
manually, can be a difficult task in reality. Almost instantly 
finding valid mappings enables rapid prototyping of DIMA 
architectures in the early aircraft development phase. 
Moreover, the DIMA designers can react quickly to system 
or hardware changes with new adapted mappings. This 
improves early validation, evaluation and problem 
identification skills of the DIMA designer.  

The handling of optimization objectives, in addition, 
reveals prior unknown potential for improvements in three 
out of four considered quality measures. Most notably is 
the reduction of the number of used devices, which is 
beneficial for all objectives. The task mapping optimization 
showed more potential than device mapping. Naturally, 
the latter problem occurs seldom during DIMA design. 
However, the results also show that improving one 
objective might downgrades another, i.e. some quality 
measures are contradictory. Indeed, the optimization for a 
single objective could lead to unpredictable bad 
performance in non-optimized objectives, although better 
solutions might be available without changing the primary 
objective. A solution for this might be a multi-objective 
optimization approach. Nevertheless, single-objective 
optimization can at least be used to explore the solution 
space and to justify architectures. For instance, it can 
answer questions like “Is this the best we can do?” and “Is
there any architecture with lower cable mass?”. Those can 
be of major importance in economic decisions. Answering 
“What-if”-questions is enabled by the proposed global 
optimal optimization algorithm. Optimization results of a 
heuristic algorithm would have less significance. 

Overall it has been demonstrated that both presented 
approaches can significantly speed up the DIMA 
architecture definition process, and, moreover, help 
developing more optimal architectures subject to the 
presented objectives on aircraft level, which is today 
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hardly possible manually. The ability to be applied on full 
architectures or selected sub-parts widens the field of 
application. However, the tested architecture is a ~5% 
cutout of a full airplane avionics architecture. It needs to 
be verified that acceptable run-times and optimization 
benefits persist on global aircraft-level. 

(a) Relative peripheral wire mass (PM)  

(b) Relative device mass (DM)  

(d) Relative cumulative mass (M)  

(d) Relative operational interruption cost (OIC)  

FIG 5. Results of optimization experiments for software 
assignment (TA) and hardware assignment (DA). 
Evaluated with the quality measures peripheral 
wire mass (PM), device mass (DM), mass (M), 
and operational interruption cost (OIC). Dashed 
line denotes the result of the manually created 
reference architecture. Experiment numbers: 
1=TA:PM, 2=TA:DM, 3=TA:M, 4=TA:OIC, 
5=DA:PM, 6=DA:OIC. 

6. CONCLUSION 
Mapping of system function software on DIMA hardware, 
as well as mapping devices is a difficult task since 
mapping is restricted by available resources and 
constraints, like segregation, resulting from safety and 
performance requirements. For both, hardware and 
software mapping, an approach was presented, which 
transforms the problem in a binary programming problem 
and solves it globally optimal with a branch-and-cut 
algorithm. In addition, both approaches allow the inclusion 
of a quality objective, which enables automatic calculation 
of valid architectures optimal to the objective. Algorithm 
input data is automatically derived from a DIMA system 
domain model. Feasibility of both approaches was 
demonstrated with manually mapped reference 
architecture. The reference architecture representing four 
duplex-redundant aircraft system has been optimized for 
task and device mapping in six experiments.  For the 
objectives peripheral wire mass, device mass, mass and 
operational interruption cost (OIC) mappings with 26% 
lower mass and 45 % lower OIC were found. Calculation 
times below 1 minute enable practical usage. An 
additional result is, however, that not all objectives can be 
optimized at the same time. In summary, the presented 
approaches enable fast automated creation of valid 
architecture and help to identify optimization potential 
during the DIMA architecture design phase. Therefore,
both approaches can speed up DIMA development and 
help to leverage the full potential of new avionics 
concepts, which is manually hardly possible for the 
avionics systems of future aircrafts, which are constantly 
rising in size and complexity. 

The next step is to validate these results on larger 
architectures up to full-aircraft DIMA architectures. Further 
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research is necessary in the fields of multi-objective 
optimization enabling a trade-off optimization between 
different quality objectives. Moreover, combined 
optimization of task and device mapping or the automated 
optimization of device types might increase the 
optimization potential.  
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