
SUPPORTING THE DESIGN OF DISTRIBUTED INTEGRATED MODULAR
AVIONICS SYSTEMS WITH BINARY PROGRAMMING

B. Annighöfer, F. Thielecke,
Hamburg University of Technology, Nesspriel 5, 21129 Hamburg, Germany

Abstract
Distributed integrated modular avionics (DIMA) is a promising concept in aircraft avionics. Aircraft systems share
resources like calculation power, memory, and sensor/actuator interfaces. Resources are provided by generalized
devices, which can be installed in distributed aircraft locations. Because of the size and complexity, valid and optimal
design of such systems is, however, a hard task if carried out manually. It is shown how to support this difficult task by
solving subtasks of architectural design as mathematical optimization problems. Allocation problems of both, software
mapping and device installation, are formulated as binary integer programs. Those are used to optimize full or sub-parts
of avionics architectures for certain objectives, e.g. mass and operational interruption cost, while considering all resource
and secondary system requirements. A suitable global optimal solver is proposed for solving resulting combinatorial
optimization problems, which are challenging in complexity and size. The potential of the proposed approaches is
demonstrated with a reference architecture composed of four redundant aircraft systems. In comparison with manual
mappings this reveals optimization potentials up to 45%, while calculation times stay below one minute.

1. INTRODUCTION
The concept of Integrated Modular Avionics (IMA) is
sharing avionic resources between aircraft systems for a
more efficient avionics system. Resources in terms of
computational power and I/O interfaces are provided by
standardized hardware.

The first generation of IMA is well established and
improves weight, cost, and size of avionics systems [1].
However, there is still optimization potential, e.g. IMA is
not capable of hosting every aircraft function owing to time
or safety issues. In addition, current implementations do
not utilize the full resource sharing capabilities, and could
introduce more cable weight than necessary. Therefore,
currently the second generation of IMA systems (IMA2G)
or Distributed IMA (DIMA) is under development. DIMA
includes new device types with extended capabilities and,
especially, allows the distribution of devices throughout
the aircraft, to achieve shorter cables and better response
times [2].

One challenge in designing IMA and particularly DIMA
systems is the complexity of these safety critical
distributed computing systems. Resource requirements of
all individual aircraft systems must be fulfilled, while
ensuring that all intra- and inter-system constraints like
reliability, segregation, power, etc. hold. Concurrently the
designed architecture should be weight and cost optimal
on aircraft level [3].

Optimal resource allocation is a well-known problem in the
distributed systems domain, e.g. [4, 5, 6]. Most commonly
it is focused on a single resource type, e. g. processor
time, and time based sharing. For DIMA the spatial
distribution is of interest. However, there is a large number
of approx. 200 different resource types, which are shared
in overlapping combinations. Moreover, most tasks have
real-time requirements, and after mapping systems must
fulfill minimal safety levels. Because of the complexity of
full-airplane architectures, the ever increasing number of
avionics functions, and the major impact of the

architecture on cable length, weight, cost, reliability, and
maintainability of an avionics system, computer-aided
design and optimization of IMA/DIMA architectures is a
growing field of research.

Sghairi et al. developed a methodology to formally collect
and evaluate requirements of a flight control systems, if
the system is mapped to a distributed avionics system like
IMA [7]. An incremental requirements based design
process is used to manually optimize the computing
hardware and its distribution.

Sagaspe et. al. proposed a combined safety assessment
and IMA allocation process [8, 9]. Under consideration
segregation and co-allocation constraints they used a
constraint solver to derive valid IMA CPU and bus
allocations, and showed feasibility for a TF/TA system.

Salzwedel and Lohse showed how to use a general
purpose systems modeling and optimization software to
optimize IMA allocation subject to communication cost and
execution time using heuristics for design space
exploration [10, 11].

Salomon proposed an approach for automated systems
safety computation for IMA hosted systems allowing
automated derivation of redundancy structures and
allocation of systems to the IMA platform demonstrated
with a high-lift system [12].

In this paper approaches are presented for optimizing the
static mapping of a set of dependent system functions to a
DIMA hardware topology and for mapping DIMA devices
to an airplane anatomy. In addition, both approaches
optimize for cost and weight quality measures. Baseline
for optimization are formal DIMA architecture domain
models containing logical system structure, system
requirements, hardware properties, and topology as well
as aircraft structure. Systems requirements are formalized
as a set of consumable resources and mapping
constraints. Both problems are formulated as a binary
programming problem, which allows solving them globally
optimal with state-of-the-art solving techniques. The result

Deutscher Luft- und Raumfahrtkongress 2012

1

DocumentID: 281221

of an optimization is a valid software and hardware
mappings optimal to a certain quality measure, which
supports the DIMA designer in creating optimal
architectures.

This article is organized as follows. Section two presents a
novel approach of how to express and solve the mapping
problems as binary programs. In section three the
implementation is presented, as well as a reference
architecture, quality measures, and an optimization
experiment to validate and benchmark the proposed
approach. Section four outlines the results of the
optimization experiments, which are discussed in chapter
five.

2. THEORY
It is proposed to express the mapping problems as a
binary programming problem. Binary programming
minimizes a linear cost function

(1)

under consideration of linear inequality constraints

(2)

which inherently includes equality constraints

(3)

The solution vector is restricted to be binary.

2.1. Software Mapping
A major task of DIMA planning is to define the distribution
of systems functions on the DIMA devices, the so called
software mapping. System functions require resources
from DIMA modules, which are, most commonly,
processor time for running control or monitor applications
and I/O interfaces for connecting sensors and actuators,
e.g. analogue input pins or discrete pins (cf. [13, 14]). In
addition, safety and performance requirements enforce to
map some system parts strictly separated or combined [9,
7].

The software mapping problem is shown in Fig. 1.
Hardware topology and software structure, as well as
number and type of resources needed and provided are
known. Redundancies are already logically defined, e.g.
duplex or triplex structures.

Each DIMA device is associated with a set of resources

(4)

it provides for hosting functions. is the amount of
available resource of resource type . A resource is a
representative for anything required and consumed in a
quantifiable unit by aircraft systems.

Aircraft systems are modeled as a set of communicating
atomic software blocks called tasks . A task can be
assigned to a device if the device is capable of hosting the
task and if the device provides sufficient resources. This is
expressed by a set of capabilities associated to each
device type. A capability

(5)

denotes that task if hosted to the device consumes the
resources specified in the set of resources

(6)

The issue is to assign, if possible, every task to a device
such that the resources on no device are exceeded. In
addition, segregation, device, location, and power
constraints have to be considered.

More detailed information on the selected modeling and
validation approach of DIMA architectures can be found in
[15].

FIG 1. The software mapping problem. Aircraft system’s
software composed of several signal exchanging
tasks needs to be mapped to DIMA hardware.
The mapping is restricted by constraints and
resource availability.

For the software mapping problem an entry in the
solution vector represents a unique assignment
possibility, i.e. there is a for each capability on each
device for each task.

(7)

Where is the number of elements of the specified type.
Consequently, solutions are valid assigning a task more
than once. This is prevented by a set of single assignment
equality constraints

(8)

In combination with the right hand side it
ensures that each task is assigned exactly once.

Resource requirements and restrictions are formulated as
inequality constraint

Deutscher Luft- und Raumfahrtkongress 2012

2

(9)

and

(10)

Each entry contains the number of resources of the
resource type and device specified by that would be
consumed if the task assignment possibility is used. For
entries corresponding to task not assignable to that device
or not requiring this kind of resource . is the
number of resource of each kind provided by each device.
Each row, therefore, ensures that the sum of resources
required by the current assignment does not exaggerate
the provided resources of a kind on that device.

The mapping of tasks is restricted by segregation and
atomic requirements. Segregation requirements specify
that two task must not be mapped to the same device.
This is enforced in the binary program by adding an
additional inequality constraint for each assignment
combination that would have two segregated tasks on the
same device. All constraints are comprised in .

Atomic requirements are handled similar. An atomic
requirement expresses that all involved tasks must be
mapped on the same device. An additional set of
inequality constraints contains a constraint for
each device, where set of atomic tasks can be mapped to.
It enforces all tasks to this device if one of them is mapped
there.

The complete binary problem assembles as

(11)

and

(12)

If , solving this problem results in a valid mapping if
a mapping exists, and is infeasible if not. Advanced cost
functions () can be handled as long as costs are
introduced by a single mapping. Within section three it is
shown how to express and optimize for cable weight,
mass, and operational interruption costs.

2.2. Hardware Mapping
A similar problem is the mapping of devices to installation
locations. The hardware mapping problem is depicted in
Fig. 2. Hardware and installation topology are known.
Software is already mapped to the hardware. Installation
locations are suitable spaces to assign devices. However,
device installation might require installation resources, e.g.
volume, slots, and cooling capacity, which must be
available in a sufficient quantity. In addition, peripherals

have fixed installation locations, which define cable
lengths .

FIG 2. The hardware mapping problem. DIMA hardware
with mapped functions needs to be mapped to
available installation locations restricted by
installation resources, like slots, and peripherals.

For the hardware mapping problem the solution vector

(13)

has an entry for each possible assignment of a device
to an installation location, i.e. the installation location has
sufficient resources for hosting this device. A unique
assignment of each device is ensured with a set of
equality constraints

(14)

In addition, an exceeding of installation resources is
prevented with an inequality constraint and for each
installation resource type for each installation location.

Since software mapping is fixed, segregation constraints
cannot be violated by device mapping. Installation
segregation constraints, however, needs to be considered.
Therefore, an inequality constraint is added for each
possibility that two devices that need to have segregated
installation locations could map to the same installation
location. Segregation constraints are collected in

.

The complete binary problem is built again by the
concatenation of constraint matrix.

(15)

If a solution exists solving this binary problem with
results in a valid device mapping. Advanced cost functions
are mass and operational interruption cost as shown in
section three.

Deutscher Luft- und Raumfahrtkongress 2012

3

2.3. Solving
Binary Programming problems belong to the class of NP-
complete problems [16], i.e. the number of calculations
necessary for solving the problem is almost proportional to
the number of all theoretic solutions. In general, those
problems can either be solved globally optimal by testing
all solutions, which results in long up to infeasible
calculation times or heuristically. Heuristics, in general, do
not result in the globally optimum, but find “good-enough”
solutions. Often the quality of the result is tunable by the
calculation time spend. A trade-off between both domains
is non-deterministic global search. Such algorithms
leverage problem properties to achieve calculation times
that are on average far below that of global search. The
worst case calculation time is, however, not reduced.
Benchmarks for both mapping problems showed that the
most common branch-and-bound approach still leads to
infeasible calculation times for realistic problem sizes.
More advanced branch-and-cut algorithms showed
feasible calculation times [17]. The latter is, therefore,
proposed for solving both mapping problems.

3. METHODS AND MATERIALS
The proposed approach is demonstrated by optimizing
manually mapped reference architecture subject to
different quality objectives. This section describes the
optimization implementation and environment, as well as
the used quality measures, the reference architecture and
the experiment’s setup.

3.1. Environment
Input and output for optimization are stored in a custom
domain model for DIMA architectures. This model is edited
and evaluated within the Eclipse-based modeling
environment for DIMA architectures, called optDIMA [15,
18]. Within the TUHH software tool optDIMA the
optimization algorithm, the objective, and the objects to
optimize are selected. Optimization inputs are
automatically derived from the model and transformed into
the corresponding binary problem matrixes. Information
extraction and problem matrix creation takes place in
MATLAB because of the high number of involved
mathematical operations. Model data is exchange
between optDIMA and MATLAB in XMI format [19]. The
binary programming problem is solved using the branch-
and-cut solver of the CPLEX optimization environment
[20]. Result interpretation and back-transformation to the
DIMA architecture model takes place in MATLAB before
the final result is visible in optDIMA. Fig. 3 depicts the full
tool chain.

All mapping optimizations were carried out on an Intel
Xeon E31270 at 3.4 GHz with 8 GB RAM running
Windows 7. MATLAB Version 2011b in combination with
CPLEX 12.4 was used.

3.2. Quality Measures
Four quality measures are used to compare optimization
results and the reference architecture. In addition, all
measures are used as optimization objectives for the
software mapping optimization and two are used for
hardware mapping optimization.

Peripheral wire mass is a major contributor to the overall
mass of an avionic system. It comprises the mass of all
cables that connect peripherals to DIMA devices. The

mass of a peripheral cable is calculated as the length of
the cable times the weight per length, which is a property
of the used cable type. Software mapping of tasks
requiring peripherals directly influences the peripheral wire
mass, since the peripheral connection wire must be routed
between the peripherals installation location and the
installation location of the DIMA device the task is mapped
to. Each assignment possibility is, therefore, weighted with
the mass of the cable that would be needed for this
assignment.

(16)

The cable routing is estimated as the shortest path
through the cable route graph from the installation model.
Task with no peripheral connection do not contribute to the
cost vector. Hardware mapping influences peripheral
cable mass in the same way. However, the movement of
one device from one installation location to another
changes the cable length of all peripherals connected to
task on that device. A devise assignment possibility is,
therefore, weighted with the accumulated mass of all
affected cables.

FIG 3. Optimization tool chain. Architectures are
developed, validated, and evaluated in optDIMA.
MATLAB is used for forward and backward
transformation between model elements and
binary problem. CPLEX solves the given
problem.

Device mass is the accumulated mass of all DIMA
devices of the architecture. The mass of each device is
defined by the device type, which is associated with a
constant mass value. The only possibility to change device
mass by mappings to create empty and, therefore, unused
devices during software mapping. Mapping devices
always results in the same device mass. Since device
mass is not defined by a single task assignment
possibility, the solution vector and all matrices of binary
problem the need to be extended by assistant
variables [21] representing whether a device is used or
not. The cost vector for those variables is assigned to
the mass of a single device .

(17)

Deutscher Luft- und Raumfahrtkongress 2012

4

Mass is the sum of peripheral wire mass and device
mass. It is, therefore, the trade-off between using less
devices and accepting longer cables. Since device mass
is only changeable trough software mapping, mass
objective is also only available for task mapping
optimization. The corresponding cost vector for the
binary problem is built by combining the cost vector for
peripheral wire mass with the last part of the device
mass cost vector .

(18)

Operational interruption costs (OIC) are the costs
resulting from flight delay or cancelation because of
unscheduled maintenance operations on the avionics
system, e.g. repair or replacement of DIMA devices. The
OIC for one device is the sum of costs introduced by
cancelation or a delay .

(19)

Whether a flight is delayed or canceled is decided on the
Minimum Equipment List (MEL) code of the device and the
time needed for repair [3]. Therefore, and
are functions of the MEL level, the repair time, and the
module reliability, i.e. critical functions mapped to reliable
modules in fast accessible installation locations minimizes
OIC. Here three MEL levels are defined. GO means the
flight can continue with the failed equipment. GOIF means
the flight can continue if certain conditions hold. NOGO
means the failed equipment must be repaired before take-
off. In case of DIMA the MEL level of a DIMA device is
defined by the most critical function mapped to the device.
MEL levels are defined for task and task groups in the
domain model. The repair time is composed of the time
needed to access the device and a fixed amount of time
needed for repairing a device. The latter is a property of
the device type. The access time is specified for each
installation location. For instance devices in the avionics
bay can be replaced faster than the devices installed in
the tail. Since OIC is not influenced by the individual
assignments but a combination of assignments, the cost
vector for OIC for the task assignment problem
equals zero for each assignment and is extended by

 additional variables. Each of the additional entries
contains the OIC that the device would have if it has a
certain MEL level.

(20)

For the device mapping problem the MEL level is known
for every device. Therefore, the cost vector contains at
each assignment possibility the OIC that the device would
cause if assigned to a certain installation location.

3.3. Reference Architecture
Validation and benchmarking of the proposed optimization
approach is carried out with a DIMA reference
architecture, which is an excerpt of and airplane’s full
architecture. However, the reference architecture is a fully
functional mapped DIMA architecture based on an IMA2G-

platform. Fig. 4 shows the reference architecture, and Tab.
1 summarizes most important quantities.

The selected platform is composed of Core Processing
Modules (CPM) and Remote Data Concentrators (RDC),
which are connected over a redundant AFDX network.
CPMs are pure computing modules. RDCs provided I/O
connectors for peripherals and connect them to the AFDX
network. Switches connect several devices on the AFDX
network. Switches and RDCs are distributed modules, and
can be installed in four installation locations. Those are the
aircraft’s nose, the avionics bay (below the cockpit), the
middle and the tail. CPMs can be installed in the avionics
bay only. Two types of CPM and RDC cope with
dissimilarity requirements. The processing powers of the
CPM types differ and both RDC types have a different
number and types of I/O interfaces. In summary, two
CPMs of each type, eight RDCs of type one and two of
type two are installed (s. Fig. 4(c)). In addition, 40
peripherals are installed in 15 additional installation
locations all over the aircraft connected by cable routes of
known length (s. Fig 3(d)).

Four related systems have been selected from the
oxygen, pressure, air, and air-conditioning domain1. All
four systems (s. Fig. 4(a)) are duplex systems, i.e. each
system has a fully redundant counterpart. Both
counterparts need to be segregated. In addition, an inter-
system constrained requiring dissimilar device types is
enforced between SYSTEM 2 and SYSTEM 4. As
depicted exemplarily in Fig. 4(b) all systems have a main
controller task and several I/O task for each connected
peripheral. The controller task requires computing
resources. The I/O tasks require different combinations of
ten I/O types. In addition, the criticality, i.e. the MEL level,
of the systems was set to NOGO for SYSTEM 3 and 4,
GOIF for system 1 and GO for SYSTEM 2.

An initial mapping was created manually. Tasks have
been placed on modules closest to the belonging
peripheral, while considering the segregation constraints.
The I/O resources per RDC were determined by assigning
each RDC type the I/O types used by the peripherals
connected to this RDC. The number of I/Os of each type
was set to the maximum number of this I/O type used on
any RDC instance.

Tasks 58

Devices 14

Peripherals 40

Installation Locations 19 (4 for DIMA devices)

Resource Types 10

Possible Task Mappings 1008 Solutions

Possible Device Mappings 194 Solutions

TAB 1. Quantities of reference architecture. Possible
mapping entries denote the number of theoretic
solutions for the optimization problem.

1 System names have been obscured

Deutscher Luft- und Raumfahrtkongress 2012

5

(a) Software of four duplex aircraft systems. Tasks (light blue) of each system instance are grouped in task
groups (dark blue). Dashed lines denote segregation constraints. Purple boxes and lines are peripheral
components required by tasks.

(b) Inside view of SYSTEM 1 A. TASK 0 is the main controller task. Other tasks are I/O tasks connected to
peripherals. Arrows denote directed message flow (signals). Each task has certain resource requirements and
needs to be mapped to DIMA modules.

(c) DIMA hardware topology consisting of four CPMs ten RDC connected over a redundant AFDX network with
eight switches

(d) Aircraft anatomy for avionics installation. Boxes denote installation locations, which can provide installation
resources (screws), and are connected with cable routes and joints. Installation locations providing resources
for DIMA devices are NOSE, AVIONICS BAY, MIDDLE, TAIL.

FIG 4. Reference architecture for optimization experiments. Depicted are systems software (a), a detailed view on
SYSTEM 1 A, the DIMA hardware topology (c), and the aircrafts installation structure (d).

Deutscher Luft- und Raumfahrtkongress 2012

6

3.4. Optimization Experiments
The proposed optimization approaches were used to carry
out six optimization experiments based on the reference
architecture. Four task mapping optimizations were carried
out with the objectives

- peripheral wire mass,
- device mass,
- mass, and
- operational interruption cost (OIC).

In addition, two device mapping optimizations were carried
with the objectives

- peripheral wire mass and
- operational interruption cost (OIC).

The resulting architectures were validated in optDIMA for
resource exceeding and constraint violations. In addition,
the all four quality measures, i.e. peripheral wire mass,
device mass, mass, and operational interruption cost were
calculated for each optimized architecture and the
reference architecture. Based on this result the six
optimized architectures were compared to the mapping of
the reference architecture. Moreover, calculation times for
optimizations were recorded.

4. RESULTS
All six optimization experiments resulted in valid
mappings. The run-time for task mapping was between
32s and 36s. Device mapping took 45s. In both cases the
calculation time splits in approximately 64% pre-
processing and problem building, 2% solving, 28% post
processing.

Fig. 5 shows the evaluation of the six optimization
experiments. It depicts how the value of each of the four
quality measures for each optimization experiment
changes relative to the value of the manually mapped
reference architecture.

Fig. 5(a) shows the change in the peripheral wire mass.
Notably, none of optimizations resulted in a lower cable
mass than that of the reference architecture. However,
both optimizations subject to the peripheral wire mass
resulted in an equivalent wire mass. This validates the
assumption that the chosen manual mapping process
results in the shortest possible cable length. The highest
increase of peripheral wire mass is perceived when
optimizing for OIC. The OIC increased to 186% after
software mapping and to 227% after hardware mapping.

Fig. 5(b) quantifies the change in device mass. By concept
no optimization resulted in an increased device mass,
since all devices are allocated in the reference
architecture. Moreover, device assignment optimization
cannot change the device mass. However, all task
assignment optimizations resulted in a lower number of
used devices, which is remarkable, since the number of
resource per module type is exactly adapted to the
reference mapping. This hints to a not optimal decision on
the number of needed devices during the manual design
or to additional requirements not covered in this study.
Optimization for device mass and cumulative mass
resulted both in using only nine of the 14 device used in
the reference architecture.

Fig. 5(c) depicts the relative change of combined

peripheral wire and device mass. The highest reduction
down to 74% is perceived by optimizing for this objective.
Since the device mass of this optimization equals the
device mass of the device mass optimization, this reveals
a non-unique solution space for the latter. The highest
increase up to 111% is archived optimizing device
assignment for OIC.

 The most significant improvement of 48% is made in OIC
as depicted in Fig 5(d). The latter is archived by task
assignment optimization subject to OIC, by grouping
NOGO tasks on modules in easily accessible installation
locations. For device assignment a reduction of 39% is
archived. Except the optimization for peripheral wire mass
the OIC of all optimized architectures is lower or equal
than that of the reference architecture. Besides the
distribution of tasks, the lower number of used devices in
experiment 2 and 3 majorly caused the reduction.

5. DISCUSSION
The proposed optimization approaches resulted in valid
architectures in all optimization experiments. No violation
of resource or secondary restrictions was perceived.
Moreover, algorithm run-times do not prevent practical
application. Especially the short run-time of the solver is
surprising. It seems that the special problem structure of
both mappings helps to solve the generally hard to solve
binary programming problem unexpectedly fast. It can be
stated, therefore, that both approaches are at least
capable of identifying valid mappings, which, if doing it
manually, can be a difficult task in reality. Almost instantly
finding valid mappings enables rapid prototyping of DIMA
architectures in the early aircraft development phase.
Moreover, the DIMA designers can react quickly to system
or hardware changes with new adapted mappings. This
improves early validation, evaluation and problem
identification skills of the DIMA designer.

The handling of optimization objectives, in addition,
reveals prior unknown potential for improvements in three
out of four considered quality measures. Most notably is
the reduction of the number of used devices, which is
beneficial for all objectives. The task mapping optimization
showed more potential than device mapping. Naturally,
the latter problem occurs seldom during DIMA design.
However, the results also show that improving one
objective might downgrades another, i.e. some quality
measures are contradictory. Indeed, the optimization for a
single objective could lead to unpredictable bad
performance in non-optimized objectives, although better
solutions might be available without changing the primary
objective. A solution for this might be a multi-objective
optimization approach. Nevertheless, single-objective
optimization can at least be used to explore the solution
space and to justify architectures. For instance, it can
answer questions like “Is this the best we can do?” and “Is
there any architecture with lower cable mass?”. Those can
be of major importance in economic decisions. Answering
“What-if”-questions is enabled by the proposed global
optimal optimization algorithm. Optimization results of a
heuristic algorithm would have less significance.

Overall it has been demonstrated that both presented
approaches can significantly speed up the DIMA
architecture definition process, and, moreover, help
developing more optimal architectures subject to the
presented objectives on aircraft level, which is today

Deutscher Luft- und Raumfahrtkongress 2012

7

hardly possible manually. The ability to be applied on full
architectures or selected sub-parts widens the field of
application. However, the tested architecture is a ~5%
cutout of a full airplane avionics architecture. It needs to
be verified that acceptable run-times and optimization
benefits persist on global aircraft-level.

(a) Relative peripheral wire mass (PM)

(b) Relative device mass (DM)

(d) Relative cumulative mass (M)

(d) Relative operational interruption cost (OIC)

FIG 5. Results of optimization experiments for software
assignment (TA) and hardware assignment (DA).
Evaluated with the quality measures peripheral
wire mass (PM), device mass (DM), mass (M),
and operational interruption cost (OIC). Dashed
line denotes the result of the manually created
reference architecture. Experiment numbers:
1=TA:PM, 2=TA:DM, 3=TA:M, 4=TA:OIC,
5=DA:PM, 6=DA:OIC.

6. CONCLUSION
Mapping of system function software on DIMA hardware,
as well as mapping devices is a difficult task since
mapping is restricted by available resources and
constraints, like segregation, resulting from safety and
performance requirements. For both, hardware and
software mapping, an approach was presented, which
transforms the problem in a binary programming problem
and solves it globally optimal with a branch-and-cut
algorithm. In addition, both approaches allow the inclusion
of a quality objective, which enables automatic calculation
of valid architectures optimal to the objective. Algorithm
input data is automatically derived from a DIMA system
domain model. Feasibility of both approaches was
demonstrated with manually mapped reference
architecture. The reference architecture representing four
duplex-redundant aircraft system has been optimized for
task and device mapping in six experiments. For the
objectives peripheral wire mass, device mass, mass and
operational interruption cost (OIC) mappings with 26%
lower mass and 45 % lower OIC were found. Calculation
times below 1 minute enable practical usage. An
additional result is, however, that not all objectives can be
optimized at the same time. In summary, the presented
approaches enable fast automated creation of valid
architecture and help to identify optimization potential
during the DIMA architecture design phase. Therefore,
both approaches can speed up DIMA development and
help to leverage the full potential of new avionics
concepts, which is manually hardly possible for the
avionics systems of future aircrafts, which are constantly
rising in size and complexity.

The next step is to validate these results on larger
architectures up to full-aircraft DIMA architectures. Further

Deutscher Luft- und Raumfahrtkongress 2012

8

research is necessary in the fields of multi-objective
optimization enabling a trade-off optimization between
different quality objectives. Moreover, combined
optimization of task and device mapping or the automated
optimization of device types might increase the
optimization potential.

7. REFERENCES
[1] P.J. Prisaznuk. Integrated modular avionics. In

Aerospace and Electronics Conference, 1992.
NAECON 1992., Proceedings of the IEEE 1992
National, pages 39–45 vol.1, May 1992.

[2] R. Fuchsen. Preparing the next generation of ima: A
new technology for the scarlett program. In Digital
Avionics Systems Conference, 2009. DASC ’09.
IEEE/AIAA 28th, pages 7.B.5–1 –7.B.5–8, October
2009.

[3] K. Neumann, E. Kleemann, R. Reichel, and
M. Lehmann. Quantitative evaluation criteria for
modern avionic system architectures. In Deutscher
Luft- und Raumfahrtkongress, Darmstadt, September
2008. DGLR.

[4] V.M. Lo. Heuristic algorithms for task assignment in
distributed systems. Computers, IEEE Transactions
on, 37(11):1384 –1397, nov 1988.

[5] Shahid H. Bokhari. Assignment Problems in Parallel
and Distributed Computing. Kluwer, 1987.

[6] M. Kafil and I. Ahmad. Optimal task assignment in
heterogeneous computing systems. In
Heterogeneous Computing Workshop, 1997. (HCW
’97) Proceedings., Sixth, pages 135 –146, 1 1997.

[7] M. Sghairi, A. de Bonneval, Y. Crouzet, J.-J. Aubert,
and P. Brot. Architecture optimization based on
incremental approach for airplane digital distributed
flight control system. In World Congress on
Engineering and Computer Science 2008, WCECS
’08. Advances in Electrical and Electronics
Engineering - IAENG Special Edition of the, pages
13–20, Oct. 2008.

[8] Laurent Sagaspe, Gerard Bel, Pierre Bieber, Frederic
Boniol, and Charles Castel. Safe allocation of avionics
shared resources. High-Assurance Systems
Engineering, IEEE International Symposium on, 0:25–
33, 2005.

[9] Laurent Sagaspe and Pierre Bieber. Constraint-based
design and allocation of shared avionics resources. In
26th AIAA-IEEE Digital Avionics Systems
Conference, Dallas, 2007.

[10] Horst Salzwedel, Nils Fischer, and Gunar Schorcht.
Moving design automation of networked systems to
early vehicle level design stages. In SAE World
Congress, Detroit, 2009.

[11] Frank Lohse, Volker Zerbe, and Thomas
Luetzelberger. Architecture analysis and optimization
of reconfigurable, complex systems. In Intelligent
Engineering Systems (INES), 2010 14th International
Conference on, pages 221 –225, may 2010.

[12] Uwe Salomon and Reinhard Reichel. Automatic
safety computation for IMA systems. In Digital
Avionics Systems Conference (DASC), 2011
IEEE/AIAA 30th, pages 7C3–1 –7C3–9, oct. 2011.

[13] D. Mazuk. IMA resource allocation process. In Digital
Avionics Systems Conference, 2008. DASC 2008.
IEEE/AIAA 27th, pages 1.B.2–1 –1.B.2–6, oct. 2008.

[14] C.B. Watkins. Integrated modular avionics: Managing
the allocation of shared intersystem resources. In
25th Digital Avionics Systems Conference, 2006

IEEE/AIAA, pages 1–12, October 2006.
[15] B. Annighöfer, E. Kleemann, and F. Thielecke. Model-

based development of integrated modular avionics
architectures on aircraft-level. In Deutscher Luft- und
Raumfahrtkongress, Bremen, September 2011.
DGLR.

[16] Pierluigi Crescenzi and Viggo Kann. A compendium
of NP optimization problems. http://www.nada.kth.se/-
~viggo/wwwcompendium/.

[17] W. Cook and M. Hartmann. On the complexity of
branch and cut methods for the traveling salesman
problem. In Polyhedral combinatorics: proceedings of
a DIMACS workshop: June 12-16, 1989, volume 1,
page 75. Amer Mathematical Society, 1990.

[18] Björn Annighöfer. optdima - optimization and planning
tools for distributed modular avionics. http://-
www.fst.tu-harburg.de/optdima/, July 2012.

[19] Object Management Group (OMG). Xml metadata
interchange specification. http://www.omg.org/spec/-
XMI/, July 2005.

[20] IBM. ILOG CPLEX Optimizer. http://www-
01.ibm.com/software/integration/optimization/cplex-
optimizer/.

[21] B. A. McCarl and T. H. Spreen. Applied Mathematical
Programming Using Algebraic Systems. Dept. of Agr.
Econ. Texas A&M University, 1996.

Deutscher Luft- und Raumfahrtkongress 2012

9

