Organisation und Validierung der Requirements im Bodensegment für die hyperspektrale Satellitenmission EnMAP

Martin Habermeyer
EnMAP Ground Segment Team

EOC – Deutsches Fernerkundungsdatenzentrum

Deutsches Zentrum für Luft- und Raumfahrt e.V.
Contents

• Mission Overview
• Development Model
 • Requirements
 • Product Tree
 • Interfaces
• Scenarios
• Verification and Validation
EnMAP – Mission Objectives

Environmental Mapping and Analysis Program: German hyperspectral satellite mission

Main objective: investigation of a wide range of ecosystem parameters comprising

- Agriculture
- Forestry
- Land Degradation
- Geology
- Coastal Zones, inland waters
EnMAP – Mission Parameters

Pushbroom-type HSI:
- 228 spectral bands
- Sampling VNIR 6.5 nm, SWIR 10 nm
- Signal-to-Noise-Ratio
 - VNIR > 500 @ 495 nm
 - SWIR > 150 @ 2200 nm
- Radiometric quantification 14 bit

SWIR FOV
900 nm < \(\lambda \) < 2450 nm
(134 spectral bands)

VNIR FOV
420 nm < \(\lambda \) < 1000 nm
(94 spectral bands)

FOV Separation:
600 m

Ground Pixel:
30 m x 30 m

Satellite
Ground Track

Pointing Range:
+/- 30° off-nadir

Swath: 30 km wide
EnMAP Satellite Parameters

- Total Weight: ~ 870 kg
- Total Size: ~ 3.1 m x 1.7 m x 1.3 m
- 512 Gbit mass memory
- 1000 km/Orbit, 5000 km/Day
- 320 Mbit/s X-Band data downlink
- Lifetime in Orbit: > 5 years

EnMAP Team

Mission Management – DLR Space Agency

Principal Investigator – GFZ Potsdam

Space Segment Project –
 • Instrument: Kayser-Threde GmbH
 • Bus: OHB System AG

Ground Segment Project –
 DLR – EOC and GSOC
 Berlin, Neustrelitz und Oberpfaffenhofen
EnMAP Ground Segment - Tasks

Planning and Operation

Communication

Satellite

Processing and Archiving
Project Phasing and Planning

Ground Segment

<table>
<thead>
<tr>
<th>Phase</th>
<th>Objective</th>
<th>Activities</th>
<th>Reviews</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 0/A 2005</td>
<td>Mission Analysis and Feasibility</td>
<td>Identify characteristics, constraints, concepts. Assess feasibility.</td>
<td>GSSRR, GSCKM</td>
</tr>
<tr>
<td>Phase B 11/06-03/08</td>
<td>Preliminary Design</td>
<td>Define requirements on GS and establish GS baseline.</td>
<td>GSPDR</td>
</tr>
<tr>
<td>Phase C 10/08-08/10</td>
<td>Detailed Design</td>
<td>Complete GS Design to configuration item level and start implementation.</td>
<td>GSCKM</td>
</tr>
<tr>
<td>Phase D / Production and Validation 08/2010 – 08/2014</td>
<td>Production Phase D1</td>
<td>Procure GS systems, develop software and/or upgrade and modify existing facilities.</td>
<td>GSTVVRR, GSTVVR</td>
</tr>
<tr>
<td></td>
<td>ITVV Phase D2</td>
<td>Integrate, verify, and validate GS systems. (includes preliminary validation of mission data)</td>
<td>GSCDR</td>
</tr>
<tr>
<td></td>
<td>Operational Validation Phase D3</td>
<td>Train people and validate full Ground Segment (includes people and mission data).</td>
<td>VOVR, ORR, FQR</td>
</tr>
<tr>
<td>Phase E / Operations 08/2014 – 10/2019</td>
<td>LEOP and Commissioning Phase E1</td>
<td>Acquire mission orbit and configuration and qualify space segment.</td>
<td>IOOR, ELR</td>
</tr>
<tr>
<td></td>
<td>Routine Operations Phase E2</td>
<td>Operate and exploit mission in-orbit</td>
<td></td>
</tr>
<tr>
<td>Phase F 2019</td>
<td>Disposal</td>
<td>Space and Ground Segment Disposal</td>
<td></td>
</tr>
</tbody>
</table>

- **GS-TVVRR**: 2013-01-25
- **Launch**: 2014-10-06
- **GS-TVVRR**: 2013-11-15
- **FQR**: 2015-01-12
- **OVRR**: 2013-11-15
- **IOOR**: annually Oct starting ’15
- **ORR**: 2014-08-14
- **ELR**: 2019-10-18
- **MCOR**: 2019-11-18

European Cooperation

ECSS

FOR SPACE STANDARDIZATION

DLR
Development Model

Ground Segment Requirement

Subsystem Requirement

Subsystem

Component

Item

Requirements

Product Tree

Interfaces

Assemblies and Test Plans

Assemblies and Test Reports
Product Tree

EnMAP Ground Segment

1= MOS
 1:4
 4:32
 32:79
 I-1XX-YY-ZZ

2= PGS
 1:7
 7:49
 49:86
 I-2XX-YY-ZZ

3= PCV
 1:4
 4:19
 19:37
 I-3XX-YY-ZZ

1 Grd. Segment
3 Systems
15 Subsystems
100 Components
202 Items
(Type: Facility)
Schematic Interaction of Subsystems

Communication Subnet (CAF part) and Infrastructure (GSOC part)
Internal and External Interfaces

- Number within circle stating number of interface items between subsystems.
- 32 interfaces broken down into 229 interface items
- The ground segment has 8 interfaces with 54 interface items (+ S- and X-Band) to ESE

EnMAP Ground Segment Subsystems

<table>
<thead>
<tr>
<th>MOS</th>
<th>PGS</th>
<th>PCV</th>
</tr>
</thead>
<tbody>
<tr>
<td>EnMAP Ground Segment Interface Matrix</td>
<td>MOS</td>
<td>PGS</td>
</tr>
<tr>
<td>Interfaces between Subsystems with Interface Identifiers</td>
<td>MOS</td>
<td>PGS</td>
</tr>
<tr>
<td>MOS</td>
<td>PGS</td>
<td>PCV</td>
</tr>
<tr>
<td>S-110 Flight Operation System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-120 Mission Planning System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-130 Flight Dynamics System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-140 Infrastr. & Ground Data Sys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-210 Neustrelitz Ground Station</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-220 Data & Information Mgmt. System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-235 Processing System HSI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-240 Instrument Planning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-250 Production Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-310 HSI Development Processor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-320 Onboard Spectr./Rad Calibration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-330 Quality Control / Grd. Calibration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-340 Instrument Monitoring</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EnMAP Ground Segment Subsystems External Interfaces with Interface Identifiers

- MOS
- PGS
- PCV

- Established Interfaces

EnMAP Ground Segment Subsystems

<table>
<thead>
<tr>
<th>MOS</th>
<th>PGS</th>
<th>PCV</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOS</td>
<td>PGS</td>
<td>PCV</td>
</tr>
<tr>
<td>S-110 Flight Operation System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-120 Mission Planning System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-130 Flight Dynamics System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-140 Infrastr. & Ground Data Sys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-210 Neustrelitz Ground Station</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-220 Data & Information Mgmt. System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-235 Processing System HSI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-240 Instrument Planning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-250 Production Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-310 HSI Development Processor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-320 Onboard Spectr./Rad Calibration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-330 Quality Control / Grd. Calibration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-340 Instrument Monitoring</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Established Interfaces

- MOS
- PGS
- PCV

- Subsystem Internal Interfaces
EnMAP Project Management Support Tool (PMS)

Perl based web-interface for the
- generation,
- manipulation, and
- visualization
of the content of a mysql-database.
Scenarios – Basis for Requirements Verification and Validation
Scenario – Summary

- Scenarios illustrate the dynamic behaviour of the ground segment; they are complementary to the static architecture of the ground segment with its product tree and interfaces.
- Ground segment scenarios
 - connect the ground segment’s elements according to their usage,
 - are described on subsystem level.
- The activities taking place within the scenarios are described in the corresponding subsystem design documents.
- The scenarios provide the basis for ITVV planning on ground segment level, i.e. the verification if requirements are met.
Origin and Distribution of Requirements

User Requirements

Mission Requirements

Customer Requirements

Ground Segment Requirements

- **Requirements**
 - Ground Segment (GS)
 - Mission Operations (MO)
 - Mission Planning and Scheduling Archiving (MP)
 - Command & Control (CC)
 - Health Monitoring (HM)
 - Performance Monitoring and Evaluation (PM)
 - Flight Dynamics (FD)
 - Onboard Software Maintenance (SM)
 - Payload Data Recording & Replay (Rec)
 - Payload Data Handling (DH)
 - Data Reception and Archiving (RA)
 - Data Processing, Calibration and Validation (PCV)
 - Product Dissemination and User Services (US)
 - EnMAP Data Policy (DP)

- **Assumptions**
 - Orbit and General Operations (M)
 - S/C Platform (SC)
 - S/C Instrument (HSI)
 - S/C Orbit and Attitude (AOC)
 - S/C TM/TC (TMC)
 - X-Band-Downlink (X)
 - S/C Simulators (SS)
 - S/C Onboard Software Maintenance (SM)
 - S/C Launcher (Lau)
 - Development Schedule (Ph)
 - Documentation to be delivered (Doc)
Ground Segment Requirements

- Text
- Compliance
- Remark
- Constituent Subsystem Requirements

Subsystem Requirements

- Text
- Compliance
- Remark
- Origin Ground Segment Requirements
- Obligation
- Verification Method

Changes only with Configuration Control!
Requirements – Compliance Documentation

• Traceability Matrices for:
 • Ground Segment Requirements to Subsystem Requirements
 • Subsystem Requirements to Ground Segment Requirements

• Compliance to Requirements is documented in Compliance Matrix
• Compliance is specified the following way:
 • FC: Full Compliance
 • PC: Partial Compliance
 • NC: Non-Compliance
 • TBD: To-Be-Determined
• Status-Quo: FC: 160, PC: 6, TBD: 27, NC: 0
• The ground segment is FC, if for all systems (MOS, PGS, PCV) FC is stated, this results in a full compliance of the Ground Segment:
• Otherwise the ground segment is PC, NC, or TBD as stated in the GS column
Requirements – Verification Strategy

• Test: Verification is achieved by measuring product performance and function under various simulated environments.

• Analysis: Verification is achieved by performing theoretical or empirical evaluation by accepted techniques.

• Review-of-design: Verification is achieved by evidence of validated design documents or, when approved, design reports, technical descriptions, engineering drawings, show the requirement is met.

• Inspection: Verification is achieved by visual determination of physical characteristics.
Assumptions and Requirements - Synopsis

GS Assumptions

Subsys. Requirements

GS Requirements

provided by Agency

provided by Ground Segment

<table>
<thead>
<tr>
<th>GS Assumption</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSR Identifier</td>
<td>ASP.Lau.0050</td>
</tr>
<tr>
<td>GSR Test</td>
<td>The S/C from launcher separation will be such that the maximum angular velocities of the EnMAP satellite after release from the launcher will not be more than ±3.0° sec in roll, pitch and yaw.</td>
</tr>
<tr>
<td>GSR Origin</td>
<td>Lau.0050</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GSR Attribute</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subsys Identifier</td>
<td>GRD.CC-0000</td>
</tr>
<tr>
<td>GS Test</td>
<td>The EnMAP Ground Facilities shall monitor the link quality for each ground station pass and log transmission errors (missing frames, corrupted frames, bit errors)</td>
</tr>
<tr>
<td>GSR Compliance</td>
<td>GRS, MOS, PCV, PGS</td>
</tr>
<tr>
<td>GSR Remark</td>
<td>MOS: monitoring of S-band downlink, MOS: monitoring of X-band downlink</td>
</tr>
<tr>
<td>GSR Constituents</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SR Attribute</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR Identifier</td>
<td>MOS-SR-1040.FOS-FUN</td>
</tr>
<tr>
<td>SR Test</td>
<td>The MOS shall be able to check the quality of the S-Band telemetry downlink and log transmission errors (missing frames, corrupted frames, bit errors)</td>
</tr>
<tr>
<td>SR Subsystem</td>
<td>S-110 MOS Flight Operation System</td>
</tr>
<tr>
<td>SR Verification</td>
<td>T</td>
</tr>
<tr>
<td>SR Origin</td>
<td>GRD.CC-0040, GRD.CC-0090, GRD.RA-0110</td>
</tr>
<tr>
<td>SR Remark</td>
<td></td>
</tr>
</tbody>
</table>
Requirements - Configuration Control

NCR: Non-Conformance-Report
SCR: System-Change-Request
ECR: Engineering Change Request
ICR: Implementation Change Request
CCN: Contract Change Notice
RfD: Request for Deviation
RfW: Request for Waiver
Technical Verification of Requirements

EnMAP Ground Segment

- Element 1
 - Sub-element 2.1
 - Sub-element 2.1.1
 - Sub-element 2.1.2
 - ... Sub-element 2.1.K
- Element 2
 - Sub-element 2.2
 - ... Sub-element 2.2.M
- ... Element N

Integration Planning
Integration Execution
Integration Strategy

Subsystem Assembly

Assembly of Subsystems

GS Assembly

Integration Strategy (EN-GS-PLN-2007, p. 30)

Subsystem Requirements fulfilled => Subsystems ready for integration

Interface Tests

Covering of Scenarios => Ground Segment Requirements are fulfilled
Phases for Requirements Verification

• Assemblies on subsystem-level
 • show that the subsystem requirements are fulfilled,
 • subsystem internal data-flow is implemented correctly,
 • show that subsystem is ready for integration into the ground segment.

• Assemblies of subsystem pairs
 • enable fast verification runs along the operational chain of scenarios,
 • allow the complete test of the multitude of parameter combinations on interface level.

• Assemblies based on scenarios
 • comprise the activities of the ground segment to be performed for successful operation,
 • guarantee that preconditions for the final end-to-end test are met.
 • Prove the fulfillment of the ground segment requirements
Interaction of Phases during System Verification - Schedule

- Subsystem Verification Development Environment
- Subsystem Verification Operational Environment
- Ground Segment Integration and Verification Pairs of Subsystems
- Ground Segment Integration and Verification Scenarios
- End-to-End-Tests
- Operational Validation

GS-CDR

Production Phase (D1)

ITVV Phase Operational Validation Phase (D3)

GS-TVVRR GS-TVVR ORR
Development Model for the meeting of requirements
Conclusions

- Mission Overview
- Development Model
 - Product Tree
 - Requirements
 - Interfaces
- Scenarios
- System Verification and Validation regarding the Requirements

Questions:
martin.habermeyer@dlr.de